AI Article Synopsis

  • Combination antiretroviral therapy (cART) effectively suppresses HIV-1 replication but struggles to eliminate the latent viral reservoir in memory CD4(+) T cells, posing a significant challenge for curing HIV-1.
  • Researchers identified a compound called 57704 that can reactivate latent HIV-1 in various cell line models and boost HIV-1 expression in some blood samples from individuals on cART, outperforming vorinostat in this regard.
  • The study reveals that 57704 works through the PI3K/Akt signaling pathway, specifically targeting the p110α isoform of PI3K, suggesting it may be a basis for developing more effective treatments to activate latent HIV-1 without triggering global T cell activation.

Article Abstract

Combination antiretroviral therapy (cART) can effectively suppress HIV-1 replication, but the latent viral reservoir in resting memory CD4(+) T cells is impervious to cART and represents a major barrier to curing HIV-1 infection. Reactivation of latent HIV-1 represents a possible strategy for elimination of this reservoir. In this study we describe the discovery of 1,2,9,10-tetramethoxy-7H-dibenzo[de,g]quinolin-7-one (57704) which reactivates latent HIV-1 in several cell-line models of latency (J89GFP, U1 and ACH-2). 57704 also increased HIV-1 expression in 3 of 4 CD8(+)-depleted blood mononuclear cell preparations isolated from HIV-1-infected individuals on suppressive cART. In contrast, vorinostat increased HIV-1 expression in only 1 of the 4 donors tested. Importantly, 57704 does not induce global T cell activation. Mechanistic studies revealed that 57704 reactivates latent HIV-1 via the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. 57704 was found to be an agonist of PI3K with specificity to the p110α isoform, but not the p110β, δ or γ isoforms. Taken together, our work suggests that 57704 could serve as a scaffold for the development of more potent activators of latent HIV-1. Furthermore, it highlights the involvement of the PI3K/Akt pathway in the maintenance of HIV-1 latency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3906007PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0084964PLOS

Publication Analysis

Top Keywords

latent hiv-1
20
reactivates latent
12
hiv-1
10
phosphatidylinositol 3-kinase
8
57704 reactivates
8
increased hiv-1
8
hiv-1 expression
8
latent
6
0
6
discovery small
4

Similar Publications

Human Immunodeficiency Virus (HIV) proviral reservoirs are cells that harbor integrated HIV proviral DNA within their nuclear genomes. These cells form a heterogeneous group, represented by peripheral blood mononuclear cells (PBMCs), tissue-resident lymphoid and monocytic cells, and glial cells of the central nervous system. The importance of studying the properties of proviral reservoirs is connected with the inaccessibility of integrated HIV proviral DNA for modern anti-retroviral therapies (ARTs) that block virus reproduction.

View Article and Find Full Text PDF

One key determinant of HIV-1 latency reversal is the activation of the viral long terminal repeat (LTR) by cellular transcription factors such as NF-κB and AP-1. Interestingly, the activity of these two transcription factors can be modulated by glucocorticoid receptors (GRs). Furthermore, the HIV-1 genome contains multiple binding sites for GRs.

View Article and Find Full Text PDF

Development of a latency model for HIV-1 subtype C and the impact of long terminal repeat element genetic variation on latency reversal.

J Virus Erad

December 2024

HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.

Sub-Saharan Africa accounts for almost 70 % of people living with HIV (PLWH) worldwide, with the greatest numbers centred in South Africa where 98 % of infections are caused by subtype C (HIV-1C). However, HIV-1 subtype B (HIV-1B), prevalent in Europe and North America, has been the focus of most cure research and testing despite making up only 12 % of HIV-1 infections globally. Development of latency models for non-subtype B viruses is a necessary step to address this disproportionate focus.

View Article and Find Full Text PDF

Early antiretroviral therapy (ART) initiation is known to limit the establishment of the HIV reservoir, with studies suggesting benefits such as a reduced number of infected cells and a smaller latent reservoir. However, the long-term impact of early ART initiation on the dynamics of the infected cell pool remains unclear, and clinical evidence directly comparing proviral integration site counts between early and late ART initiation is limited. In this study, we used Linear Target Amplification-PCR (LTA-PCR) and Next Generation Sequencing to compare unique integration site (UIS) clonal counts between individuals who initiated ART during acute HIV infection stage (Acute-ART group) and those in the AIDS stage (AIDS-ART group).

View Article and Find Full Text PDF

The persistence of HIV-1 proviruses in latently infected cells allows viremia to resume upon treatment cessation. To characterize the resulting immune response, we compare plasma proteomics and single-cell transcriptomics of peripheral blood mononuclear cells (PBMCs) before, during, and after detectable plasma viremia. We observe unique transcriptional signatures prior to viral rebound including a significant increase in CD16 monocytes with increased anti-viral gene expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!