Objective: Ankylosing spondylitis (AS) is associated with excessive cardiovascular (CV) morbidity. Interactions between activated endothelium and monocytes precede atherosclerotic plaques. Our aim was to quantify blood monocyte subsets in relation to endothelial activation and inflammatory activity in subjects with AS who were free of clinical atherosclerotic CV disease.
Methods: Markers of inflammation and endothelial activation were measured in 47 patients with AS receiving no disease-modifying antirheumatic drugs, and 22 healthy controls. Exclusion criteria included atherosclerotic CV disease and traditional risk factors. Flow cytometry was used to identify monocyte subsets: classical CD14(++)CD16(-), intermediate CD14(++)CD16(+), and nonclassical CD14(+)CD16(++) monocytes and to evaluate their expression of CD11b and CD11c.
Results: Traditional risk factors were comparable among the groups, except for lower high-density lipoprotein cholesterol in AS (p = 0.007). Relative to controls, in subjects with AS counts of classical monocytes were higher (84.3 ± 5.4 vs 78.9 ± 5.3% of blood monocytes, p < 0.001) and nonclassical monocytes lower (2.9 ± 2.2 vs 5.5 ± 2.3%, p < 0.001). In AS we observed increased soluble intercellular adhesion molecule-1 [251 (224-293) vs 202 (187-230) ng/ml, p = 0.002], an endothelial ligand for monocytic β2-integrin CD11b/CD18. CD11b expression on all 3 monocyte subsets was elevated in 21 AS subjects with a Bath Ankylosing Spondylitis Disease Activity Index score ≥ 4 versus the remaining patients (p = 0.005-0.03). C-reactive protein, interleukin 6 (IL-6), and pentraxin-3 were increased in AS, in contrast to tumor necrosis factor-α and IL-18. IL-6 correlated with classical monocytes numbers in AS (r = 0.56, p < 0.0001) but not in the controls (r = 0.10, p = 0.65).
Conclusion: Our findings suggest a contribution of immune dysregulation to enhanced monocyte-endothelial interactions in AS, especially in patients with active disease, which possibly can accelerate atherogenesis on a longterm basis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3899/jrheum.130803 | DOI Listing |
PLoS One
January 2025
Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
Triple negative breast cancers often contain higher numbers of tumour-infiltrating lymphocytes compared with other breast cancer subtypes, with their number correlating with prolonged survival. Since little is known about tumour-infiltrating lymphocyte trafficking in triple negative breast cancers, we investigated the relationship between tumour-infiltrating lymphocytes and the vascular compartment to better understand the immune tumour microenvironment in this aggressive cancer type. We aimed to identify mechanisms and signaling pathways responsible for immune cell trafficking in triple negative breast cancers, specifically of basal type, that could potentially be manipulated to change such tumours from immune "cold" to "hot" thereby increasing the likelihood of successful immunotherapy in this challenging patient population.
View Article and Find Full Text PDFSci Adv
January 2025
Center for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi, 10, 16132 Genova, Italy.
The blood-brain barrier (BBB) maintains brain homeostasis but also prevents most drugs from entering the brain. No paracellular diffusion of solutes is allowed because of tight junctions that are made impermeable by the expression of claudin5 (CLDN5) by brain endothelial cells. The possibility of regulating the BBB permeability in a transient and reversible fashion is in strong demand for the pharmacological treatment of brain diseases.
View Article and Find Full Text PDFDiabetes
January 2025
Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
Diabetes is a major risk factor for cardiovascular disease, but the molecular mechanisms underlying diabetic vasculopathy have been elusive. Here we report that inositol hexakisphosphate kinase 1 (IP6K1) mediates hyperglycemia-induced endothelial senescence by rewiring the liver kinase B1 (LKB1) signaling from activating the adenosine monophosphate-activated protein kinase (AMPK) pathway to the p53 pathway. We found that hyperglycemia upregulated IP6K1, which disrupts the Hsp/Hsc70 and carboxyl terminus of Hsc70-interacting protein (CHIP)-mediated LKB1 degradation, leading to increased expression levels of LKB1.
View Article and Find Full Text PDFDiabetes
January 2025
Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China.
Diabetic microvascular dysfunction is evidenced by disrupted endothelial cell junctions and increased microvascular permeability. However, effective strategies against these injuries remain scarce. In this study, the type 2 diabetes mouse model was established by high-fat diet combined with streptozotocin injection in Rnd3 endothelial- specific transgenic and knockout mice.
View Article and Find Full Text PDFTransl Vis Sci Technol
January 2025
Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
Purpose: Alteration of visual acuity in wet age-related macular degeneration (AMD) is mostly driven by vascular endothelial growth factor A (VEGF-A)-induced edema from leaky newly forming blood vessels below the retina layers. To date, all therapies aimed at alleviation of this process have relied on inhibition of VEGF-A activity. Although effective in preventing vascular leak and edema, this approach also leads to the loss of normal vasculature and multiple related side effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!