Uptake of 3-O-methyl-(14)C-D-glucose by a unicellular blue-green alga.

Planta

Department of Physiology, University of North Carolina, School of Medicine, Chapel Hill.

Published: December 1971

The uptake of 3-O-methyl-(14)C-D-glucose, a non-metabolizable sugar, by autotrophically grown Synechococcus cedrorum was studied at low sugar concentrations in the incubation medium (0.71-11.36 μM), in the light and in the dark. Optimum sugar accumulation against a concentration gradient occurred within dark-treated "starved" cells that were incubated in the light. This phenomenon was greatly inhibited by metabolic inhibitors; it was much less when sugar uptake was observed in the dark. Control cells incubated in the light accumulated 3-O-methyl-(14)C-D-glucose against a concentration gradient only at lower sugar concentrations (0.71-2.84 μM) and to a lesser extent than the dark-treated cells. Sugar uptake against a concentration gradient by the control cells was completely inhibited in the dark. The results indicate that the morphologically simple unicellular blue-green alga, S. cedrorum, is under certain conditions capable of obtaining a sugar from its medium by an active transport process.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00385201DOI Listing

Publication Analysis

Top Keywords

concentration gradient
12
uptake 3-o-methyl-14c-d-glucose
8
unicellular blue-green
8
blue-green alga
8
sugar concentrations
8
cells incubated
8
incubated light
8
sugar uptake
8
control cells
8
sugar
7

Similar Publications

Computer simulation was utilized to characterize the electrophoretic processes occurring during the enantioselective capillary electrophoresis-mass spectrometry (CE-MS) analysis of ketamine, norketamine, and hydroxynorketamine in a system with partial filling of the capillary with 19 mM (equals 5%) of highly sulfated γ-cyclodextrin (HS-γ-CD) and analyte detection on the cathodic side. Provided that the sample is applied without or with a small amount of the chiral selector, analytes become quickly focused and separated in the thereby formed HS-γ-CD gradient at the cathodic end of the sample compartment. This gradient broadens with time, remains stationary, and gradually reduces its span from the lower side due to diffusion such that analytes with high affinity to the anionic selector become released onto the other side of the focusing gradient where anionic migration and defocusing occur concomitantly.

View Article and Find Full Text PDF

Global declines in wild mussel populations and production have been linked to the impacts of climate change and pollution. Summer die-offs of mussels (Perna canaliculus), spat retention issues, and a severe decline in mussel spat settlement have been reported in the Marlborough Sounds, an important area for mussel farming in New Zealand. Preliminary evidence suggests that naturally occurring contaminants and changing land use in the surrounding areas, could contribute to the decline of this species.

View Article and Find Full Text PDF

Gradient experiment reveals physiological stress from heavy metal zinc on the economically valuable seaweed Sargassum fusiforme.

Mar Environ Res

January 2025

National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, 325035, Wenzhou, China; Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, 325035, Wenzhou, China. Electronic address:

Zn is a common heavy metal pollutant in water bodies and accounts for the largest proportion of heavy metal pollutants in many rivers entering the sea. This study investigated the growth and physiological response characteristics of Sargassum fusiforme under different divalent Zn ion concentration gradients. We observed that low concentration Zn treatment (<2 mg L) exerted no significant effect on the growth rate, photosynthesis, and nitrogen metabolism-related indicators of S.

View Article and Find Full Text PDF

The expansion of urban settlements over native environments may expose biodiversity to a host of emerging contaminants, with unintended ecological effects. This study evaluated patterns of contamination of streamwater by antidepressants in the Upper Tietê River Basin, a watershed of high social, economic and environmental relevance for comprising both the largest urban settlement in South America (the Metropolitan Region of São Paulo) and remnants of a globally important biodiversity hotspot (the Atlantic Rainforest). We sampled 53 third-order streams draining catchments regularly distributed across a gradient in urban cover.

View Article and Find Full Text PDF

Engineered sulfonated porous carbon/cellulose nanofiber hybrid membrane for high-efficiency osmotic energy conversion applications.

Int J Biol Macromol

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Harnessing ionic gradients to generate electricity has inspired the development of nanofluidic membranes with charged nanochannels for osmotic energy conversion. However, achieving high-performance osmotic energy output remains elusive due to the trade-off between ion selectivity and nanochannel membrane permeability. In this study, we report a homogeneous nanofluidic membrane, composed of sulfonated nanoporous carbon (SPC) and TEMPO-oxidized cellulose nanofibers (T-CNF), engineered to overcome these limitations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!