Background: Dexmedetomidine is useful during mapping of epileptic foci as it facilitates electrocorticography unlike most other anesthetic agents. Patients with seizure disorders taking enzyme-inducing anticonvulsants appear to be resistant to its sedative effects. The objective of the study was to compare the pharmacokinetic and pharmacodynamic profile of dexmedetomidine in healthy volunteers with volunteers with seizure disorders receiving enzyme-inducing anticonvulsant medications.
Methods: Dexmedetomidine was administered using a step-wise, computer-controlled infusion to healthy volunteers (n = 8) and volunteers with seizure disorders (n = 8) taking phenytoin or carbamazapine. Sedation and dexmedetomidine plasma levels were assessed at baseline, during the infusion steps, and after discontinuation of the infusion. Sedation was assessed by using the Observer's Assessment of Alertness/Sedation Scale, Ramsay Sedation Scale, and Visual Analog Scale and processed electroencephalography (entropy) monitoring. Pharmacokinetic analysis was performed on both groups, and differences between groups were determined using the standard two-stage approach.
Results: A two-compartment model was fit to dexmedetomidine concentration-time data. Dexmedetomidine plasma clearance was 43% higher in the seizure group compared with the control group (42.7 vs. 29.9 l/h; P = 0.007). In contrast, distributional clearance and the volume of distribution of the central and peripheral compartments were similar between the groups. No difference in sedation was detected between the two groups during a controlled range of target plasma concentrations.
Conclusion: This study demonstrates that subjects with seizure disorders taking enzyme-inducing anticonvulsant medications have an increased plasma clearance of dexmedetomidine as compared with healthy control subjects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/ALN.0000000000000141 | DOI Listing |
Seizure
January 2025
Neurology department, Royal Brisbane and Women's Hospital, Brisbane, Australia.
Objectives: There have been conflicting reports about the frequency of neural autoantibodies in epilepsy cohorts, which is confounded by the lack of clear distinction of epilepsy from acute symptomatic seizures due to encephalitis. The aim of this study was to determine the frequency of neural autoantibodies in a well characterised population of refractory focal epilepsy of known and unknown cause.
Methods: Cases were recruited from epilepsy outpatient clinics at the Princess Alexandra, Mater, Royal Brisbane and Women's and Cairns Base Hospitals from 2021 - 2023.
Neurology
February 2025
Department of Neurology, Washington University School of Medicine, St. Louis, MO; and.
Neurology
February 2025
Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Ontario, Canada.
Pathogenic variants in cause congenital muscular dystrophy through hypoglycosylation of alpha-dystroglycan (OMIM #615350). The established phenotypic spectrum of GMPPB-related disorders includes recurrent rhabdomyolysis, limb-girdle muscular dystrophy, neuromuscular transmission abnormalities, and congenital muscular dystrophy with variable brain and eye anomalies. We report a 9-month-old male infant with congenital muscular dystrophy, infantile spasms, and compound heterozygous pathogenic variants (c.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Department of Neurology, School of Medicine, Affiliated ZhongDa Hospital, Southeast University, Dingjiaqiao 87, Nanjing, 210009, Jiangsu, China.
The dysregulation of lipid metabolism has been associated with the etiology and progression of the neurological pathology. However, the roles of lipid metabolism and the molecular mechanism in epilepsy and the use of antiepileptic drugs (AEDs) are relatively understudied. Gene expression profiles of GSE143272 from blood samples were included for differential analysis, and the lipid metabolism-related differentially expressed genes (DEGs) were identified.
View Article and Find Full Text PDFJ Neurol
January 2025
Epilepsy Unit - Sleep Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
Background: Temporal lobe epilepsy with isolated amygdala enlargement (TLE-AE) still lacks a definite characterization and controversies exist.
Methods: We conducted a retrospective study identifying brain MRI scans with isolated AE between 2015 and 2021. We collected clinical and paraclinical data of patients with TLE-AE and evaluated the outcome.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!