Binary mixtures of cyclic (TMS) or acyclic sulfones (MIS, EIS and EMS) with EMC or DMC have been used in electrolytes containing LiPF6 (1 M) in both Li4Ti5O12/Li half-cells and Li4+xTi5O12/Li4Ti5O12 symmetric cells and compared with standard EC/EMC or EC/DMC mixtures. In half-cells, sulfone-based electrolytes cannot be satisfactorily cycled owing to the formation of a resistive layer at the lithium interface, which is not stable and generates species (RSO2(-) and RSO3(-)) able to migrate toward the titanate electrode interface. Potentiostatic and galvanostatic tests of Li4Ti5O12/Li half-cells show that charge transfer resistance increases drastically when sulfones are used in the electrolyte composition. Moreover, cyclability and coulombic efficiency are low. Conversely, when symmetric Li4+xTi5O12/Li4Ti5O12 cells are used, it is demonstrated that MIS-(methyl isopropyl sulfone) and TMS-(tetra methyl sulfone) based electrolytes exhibit reasonable electrochemical performances as compared to the EC/DMC or EC/EMC standard mixtures. Surface analysis by XPS of both the Li4+xTi5O12 (partially oxidized) and Li7Ti5O12 (reduced) electrodes taken from symmetric cells reveals that sulfones do not participate in the formation of surface layers. Alkylcarbonates (EMC or DMC), used as co-solvents in sulfone-based binary electrolytes, ensure the formation of surface layers at the titanate interfaces. Therefore, EMC reduction at the two Li4+xTi5O12/electrolyte interfaces in symmetric cells leads to the formation of carbonates, ethers and mineral compounds such as ROCO2Li and Li2CO3. Finally, huge amounts of LiF are detected at the titanate electrode surface, resulting in an increase in the resistivity of symmetric cells and capacity losses.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3cp54862gDOI Listing

Publication Analysis

Top Keywords

symmetric cells
16
emc dmc
8
li4ti5o12/li half-cells
8
titanate electrode
8
formation surface
8
surface layers
8
symmetric
5
cells
5
dynamics li4ti5o12/sulfone-based
4
li4ti5o12/sulfone-based electrolyte
4

Similar Publications

2D P-doped carbon nitride as an effective artificial solid electrolyte interphase for the protection of Li anodes.

Phys Chem Chem Phys

January 2025

Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Fisicoquímica, X5000HUA Córdoba, Argentina.

Metallic lithium plays an important role in the development of next-generation lithium metal-based batteries. However, the uncontrolled growth of lithium dendrites limits the use of lithium metal as an anode. In this context, a stable solid electrolyte interphase (SEI) is crucial for regulating dendrite formation, stability, and cyclability of lithium metal anodes.

View Article and Find Full Text PDF

Permeance-selectivity trade-offs are inherent to polymeric membranes. In fuel cells, thinner proton exchange membranes (PEMs) could enable higher proton conductance and increased power density with lower area-specific resistance (ASR), smaller ohmic losses, and lower ionomer cost. However, reducing thickness is accompanied by an increase in undesired species crossover harming performance and long-term efficiency.

View Article and Find Full Text PDF

Rapid Na Transport Pathway and Stable Interface Design Enabling Ultralong Life Solid-State Sodium Metal Batteries.

Angew Chem Int Ed Engl

December 2024

School of Materials Science and Engineering, State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Technology Innovation Center of High Performance Resin Materials (Liaoning Province), Dalian University of Technology, Dalian, 116024, China.

Sodium-metal batteries (SMBs) using solid-state polymer electrolytes (SPEs) show impressive superiority in energy density and safety. As promising candidates for SPEs, solid-state plastic crystal electrolytes (SPCE) based on succinonitrile (SN) plastic crystal could achieve high ion conductivity and wide voltage window. Nonetheless, the notorious SN decomposition reaction on the electrode/electrolyte interface seriously challenges the stable operation of the battery.

View Article and Find Full Text PDF

Glutamate delta receptor 1 (GluD1) is a unique synaptogenic molecule expressed at excitatory and inhibitory synapses. The lateral habenula (LHb), a subcortical structure that regulates negative reward prediction error and major monoaminergic systems, is enriched in GluD1. LHb dysfunction has been implicated in psychiatric disorders such as depression and schizophrenia, both of which are associated with GRID1, the gene that encodes GluD1.

View Article and Find Full Text PDF

Dual-Anion-Rich Polymer Electrolytes for High-Voltage Solid-State Lithium Metal Batteries.

ACS Nano

January 2025

Department of Physics, JC STEM Lab of Energy and Materials Physics, City University of Hong Kong, Hong Kong 999077, P. R. China.

Solid polymer electrolytes (SPEs) are promising candidates for lithium metal batteries (LMBs) owing to their safety features and compatibility with lithium metal anodes. However, the inferior ionic conductivity and electrochemical stability of SPEs hinder their application in high-voltage solid-state LMBs (HVSSLMBs). Here, a strategy is proposed to develop a dual-anion-rich solvation structure by implementing ferroelectric barium titanate (BTO) nanoparticles (NPs) and dual lithium salts into poly(vinylidene fluoride) (PVDF)-based SPEs for HVSSLMBs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!