The phospholipase A2 activity of peroxiredoxin 6 is inhibited by the transition state analog, 1-hexadecyl-3-(trifluoroethyl)-sn-glycero-2-phosphomethanol (MJ33). This activity is required for the activation of NADPH oxidase, type 2. The present study evaluated the effect of MJ33 on manifestations of acute lung injury. Mice were injected intratracheally (IT) with LPS from Escherichia coli 0111:B4 (LPS, 1 or 5 mg/kg), either concurrently with LPS or 2 h later, and evaluated for lung injury 24 h later. MJ33 inhibited reactive oxygen species (ROS) generation by lungs when measured at 24 h after LPS. LPS at either a low or high dose significantly increased lung infiltration with inflammatory cells, secretion of proinflammatory cytokines (IL-6, TNF-α, and the chemokine macrophage inflammatory protein-2), expression of lung vascular cell adhesion molecule, lung permeability (protein in bronchoalveolar lavage fluid, leakage of FITC-dextran, lung wet-to-dry weight ratio), tissue lipid peroxidation (thiobarbituric acid reactive substances, 8-isoprostanes), tissue protein oxidation (protein carbonyls), and activation of NF-κB. MJ33, given either concurrently or 2 h subsequent to LPS, significantly reduced all of these measured parameters. Previous studies of toxicity showed a high margin of safety for MJ33 in the intact mouse. Thus we have identified MJ33 as a potent, nontoxic, and specific mechanism-based inhibitor of NADPH oxidase type 2-mediated ROS generation that protects mice against lung injury associated with inflammation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3962626 | PMC |
http://dx.doi.org/10.1152/ajplung.00374.2013 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Institute of Translational Medicine, Shanghai University, 200444 Shanghai, China.
Background: Dexamethasone has proven life-saving in severe acute respiratory syndrome (SARS) and COVID-19 cases. However, its systemic administration is accompanied by serious side effects. Inhalation delivery of dexamethasone (Dex) faces challenges such as low lung deposition, brief residence in the respiratory tract, and the pulmonary mucus barrier, limiting its clinical use.
View Article and Find Full Text PDFExp Lung Res
January 2025
Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.
Acute lung injury (ALI) is a severe respiratory disease with high mortality, mainly due to overactivated oxidative stress and subsequent pyroptosis. Mesencephalic astrocyte-derived neurotrophic factor (MANF), an inducible secretory endoplasmic reticulum (ER) stress protein, inhibits lipopolysaccharide (LPS)-induced acute lung injury (ALI). However, the exact molecular mechanism remains unclear.
View Article and Find Full Text PDFViruses
December 2024
Scientific Research Institute for Biological Safety Problems, Ministry of Health of Kazakhstan, Almaty 080409, Kazakhstan.
The global burden of COVID-19 continues to rise, and despite significant progress in vaccine development, there remains a critical need for effective treatments for the severe inflammation and acute lung injury associated with SARS-CoV-2 infection. In this study, we explored the antiviral properties of a plant-derived complex consisting of flavonol and hydroxyorganic acid compounds. Our research focused on the ability of the flavonol and hydroxyorganic acid complex to suppress the activity of several key proteins involved in the replication and maturation of SARS-CoV-2.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil.
: Acute lung injury (ALI) is an inflammatory disorder affecting patients in intensive care with high mortality. No specific pharmacological treatment is available. L.
View Article and Find Full Text PDFLife (Basel)
January 2025
Department of Microbiology, College of Medicine, Konyang University, Daejeon 32992, Republic of Korea.
In this study, the anti-inflammatory effect of the hot water extract of Endarachne binghamiae (EB-WE), a type of marine brown algae, was investigated in LPS-stimulated RAW 264.7 cells and an acute lung injury (ALI) mouse model induced by intranasal LPS administration. Treatment with EB-WE significantly inhibited NO and pro-inflammatory cytokine (TNF-a and IL-6) production in LPS-stimulated RAW 264.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!