Recent evidence in vitro suggests that the tuft dendrites of pyramidal neurons are capable of evoking local NMDA receptor-dependent electrogenesis, so-called NMDA spikes. However, it has so far proved difficult to demonstrate their existence in vivo. Moreover, it is not clear whether NMDA spikes are relevant to the output of pyramidal neurons. We found that local NMDA spikes occurred in tuft dendrites of layer 2/3 pyramidal neurons both spontaneously and following sensory input, and had a large influence on the number of output action potentials. Using two-photon activation of an intracellular caged NMDA receptor antagonist (tc-MK801), we found that isolated NMDA spikes typically occurred in multiple branches simultaneously and that sensory stimulation substantially increased their probability. Our results demonstrate that NMDA receptors have a vital role in coupling the tuft region of the layer 2/3 pyramidal neuron to the cell body, enhancing the effectiveness of layer 1 input.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nn.3646 | DOI Listing |
J Clin Med
December 2024
Division of Biostatistics and Neural Networks, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland.
: Deep brain stimulation (DBS) is employed to adjust the activity of impaired brain circuits. The variability in clinical trial outcomes for treating Alzheimer's disease with memantine is not yet fully understood. We conducted a randomized in silico study comparing virtual DBS therapies with treatment involving an NMDA antagonist combined with DBS in patients with Alzheimer's disease.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Molecular Medicine, Brain Signalling Laboratory, Institute of Basic Medical Sciences, Section for Physiology, University of Oslo, Oslo, Norway.
Propofol and ketamine are widely used general anaesthetics, but have different effects on consciousness: propofol gives a deeply unconscious state, with little or no dream reports, whereas vivid dreams are often reported after ketamine anaesthesia. Ketamine is an N-methyl-D-aspartate (NMDA) receptor antagonist, while propofol is a γ-aminobutyric-acid (GABAA) receptor positive allosteric modulator, but these mechanisms do not fully explain how these drugs alter consciousness. Most previous in vitro studies of cellular mechanisms of anaesthetics have used brain slices or neurons in a nearly "comatose" state, because no "arousing" neuromodulators were added.
View Article and Find Full Text PDFDiabetes
November 2024
University of Münster, Pharmaceutical and Medicinal Chemistry, Dept. of Pharmacology, PharmaCampus, Münster, Germany.
Glucose-stimulated beta-cells exhibit synchronized calcium dynamics across the islet that recruit beta-cells to enhance insulin secretion. Compared to calcium dynamics, the formation and cell-to-cell propagation of electrical signals within the islet are poorly characterized. To determine factors that influence the propagation of electrical activity across the islet underlying calcium oscillations and beta-cell synchronization, we used high-resolution CMOS multielectrode arrays (MEA) to measure voltage changes associated with the membrane potential of individual cells within intact C57BL6 mouse islets.
View Article and Find Full Text PDFJ Neurosci Res
November 2024
Department of Physiology, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul, Turkey.
Refractory status epilepticus (RSE) is a condition with serious mortality and morbidity rate, resistant to benzodiazepine and second-line antiepileptic drugs. This study aimed to electrophysiologically investigate the combination of NMDA receptor antagonist ketamine and GABAergic agent propofol in an RSE model induced by lithium-pilocarpine in male Sprague-Dawley rats. Seventy-two male Sprague-Dawley rats were divided into nine groups.
View Article and Find Full Text PDFbioRxiv
November 2024
Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA, 47907.
Focal cooling is a powerful technique to temporally scale neural dynamics. However, the underlying cellular mechanisms causing this scaling remain unresolved. Here, using targeted focal cooling (with a spatial resolution of 100 micrometers), dual somato-dendritic patch clamp recordings, two-photon calcium imaging, transmitter uncaging, and modeling we reveal that a 5°C drop can enhance synaptic transmission, plasticity, and input-output transformations in the distal apical tuft, but not in the basal dendrites of intrinsically bursting L5 pyramidal neurons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!