Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background Context: The ideal tissue-engineered solution for any bone graft substitute is to assist in the rapid formation of bone and facilitate fusion.
Purpose: The present study aims to evaluate this E-BMP-2 (Escherichia coli-derived human bone morphogenetic protein-2) in ovine posterolateral lumbar fusion (PLF) to examine the influence of dose and overall performance in a model with similar graft size and diffusive challenges to the human.
Study Design/setting: In vivo large animal model study.
Methods: An adult ovine PLF was performed in 30 animals with groups of E-BMP-2 with a beta-tricalcium phosphate (β-TCP) carrier at three different dosages, β-TCP alone, and autograft from the iliac crest. The fusions were assessed by radiography (X-ray and microcomputed tomography), mechanical testing, and hard-tissue histology with bone labels at 6, 8, and 10 weeks along with routine paraffin histology at 12 weeks.
Results: Results showed increasing new bone and fusion rate with E-BMP-2 dose, whereas β-TCP alone was largely resorbed and did not achieve fusion in this model at 12 weeks. Autograft showed similar grading for the amount of bone between the transverse processes but a lower fusion rate than β-TCP/E-BMP-2 groups. Bone labels revealed new bone formation at all time points for the E-BMP2 groups, whereas the autograft group showed active bone formation at 10 weeks. Beta-tricalcium phosphate displayed reliable incorporation into the decorticated host bone, whereas limited new bone was found between the transverse processes. At the center of the fusion mass, increased E-BMP-2 dose led to increased incorporation of β-TCP by new bone.
Conclusions: These results suggest that E-BMP-2 was capable of producing posterolateral fusion in the ovine model that is equal to or superior to autologous graft in terms of fusion rate and mechanical strength. E-BMP-2 dose had considerable influence on β-TCP granule resorption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.spinee.2014.01.043 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!