A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

NF-κB enhances hypoxia-driven T-cell immunosuppression via upregulation of adenosine A(2A) receptors. | LitMetric

Hypoxia affects inflammation by modulating T-cell activation via the adenosinergic system. We supposed that, in turn, inflammation influences cell hypoxic behavior and that stimulation of T-cells in inflammatory conditions involves the concerted action of the nuclear factor κB (NF-κB) and the related hypoxia-inducible factor 1α (HIF-1α) on the adenosinergic system. We addressed this hypothesis by monitoring both transcription factors and four adenosinergic signaling parameters - namely adenosine, adenosine deaminase (ADA), adenosine A2A receptor (A2AR) and cAMP - in T-cells stimulated using phorbol myristate acetate and phytohemagglutinin and submitted to hypoxic conditions which were mimicked using CoCl2 treatment. We found that cell viability was more altered in stimulated than in resting cells under hypoxia. Detailed analysis showed that: i) NF-κB activation remained at basal level in resting hypoxic cells but greatly increased following stimulation, stimulated hypoxic cells exhibiting the higher level; ii) HIF-1α production induced by hypoxia was boosted via NF-κB activation in stimulated cells whereas hypoxia increased HIF-1α production in resting cells without further activating NF-κB; iii) A2AR expression and cAMP production increased in stimulated hypoxic cells whereas adenosine level remained unchanged due to ADA regulation; and iv) the presence of H2S, an endogenous signaling molecule in inflammation, reversed the effect of stimulation on cell viability by down-regulating the activity of transcription factors and adenosinergic immunosuppression. We also found that: i) the specific A2AR agonist CGS-21680 increased the suppressive effect of hypoxia on stimulated T-cells, the antagonist ZM-241385 exhibiting the opposite effect; and ii) Rolipram, a selective inhibitor of cAMP-specific phosphodiesterase 4, and 8-Br-cAMP, a cAMP analog which preferentially activates cAMP-dependent protein kinase A (PKA), increased T-cell immunosuppression whereas H-89, a potent and selective inhibitor of cAMP-dependent PKA, restored cell viability. Together, these data indicate that inflammation enhances T-cell sensitivity to hypoxia via NF-κB activation. This process upregulates A2AR expression and enhances cAMP production and PKA activation, resulting in adenosinergic T-cell immunosuppression that can be modulated via H2S.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cellsig.2014.01.024DOI Listing

Publication Analysis

Top Keywords

t-cell immunosuppression
12
cell viability
12
nf-κb activation
12
hypoxic cells
12
adenosine a2a
8
activation adenosinergic
8
adenosinergic system
8
transcription factors
8
factors adenosinergic
8
resting cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!