Sequential and opposing activities of Wnt and BMP coordinate zebrafish bone regeneration.

Cell Rep

Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Department of Biology, University of Oregon, Eugene, OR 97403, USA. Electronic address:

Published: February 2014

Zebrafish fully regenerate lost bone, including after fin amputation, through a process mediated by dedifferentiated, lineage-restricted osteoblasts. Mechanisms controlling the osteoblast regenerative program from its initiation through reossification are poorly understood. We show that fin amputation induces a Wnt/β-catenin-dependent epithelial to mesenchymal transformation (EMT) of osteoblasts in order to generate proliferative Runx2(+) preosteoblasts. Localized Wnt/β-catenin signaling maintains this progenitor population toward the distal tip of the regenerative blastema. As they become proximally displaced, preosteoblasts upregulate sp7 and subsequently mature into re-epithelialized Runx2(-)/sp7(+) osteoblasts that extend preexisting bone. Autocrine bone morphogenetic protein (BMP) signaling promotes osteoblast differentiation by activating sp7 expression and counters Wnt by inducing Dickkopf-related Wnt antagonists. As such, opposing activities of Wnt and BMP coordinate the simultaneous demand for growth and differentiation during bone regeneration. This hierarchical signaling network model provides a conceptual framework for understanding innate bone repair and regeneration mechanisms and rationally designing regenerative therapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4009375PMC
http://dx.doi.org/10.1016/j.celrep.2014.01.010DOI Listing

Publication Analysis

Top Keywords

opposing activities
8
activities wnt
8
wnt bmp
8
bmp coordinate
8
bone regeneration
8
fin amputation
8
bone
6
sequential opposing
4
wnt
4
coordinate zebrafish
4

Similar Publications

Cellular systems that govern protein folding rely on a delicate balance of functional redundancy and diversification to maintain protein homeostasis (proteostasis). Here, we use to demonstrate how both overlapping and divergent activities of two homologous endoplasmic reticulum (ER)-resident HSP70 family chaperones, HSP-3 and HSP-4, orchestrate ER proteostasis and contribute to organismal physiology. We identify tissue-, age-, and stress-specific protein expression patterns and find both redundant and distinct functions for HSP-3 and HSP-4 in ER stress resistance, reproduction, and body size regulation.

View Article and Find Full Text PDF

Myc hyperactivation coordinately regulates numerous metabolic processes to drive lymphomagenesis. Here, we elucidate the temporal and functional relationships between the medley of pathways, factors, and mechanisms that cooperate to control redox homeostasis in Myc-overexpressing B cell lymphomas. We find that Myc overexpression rapidly stimulates the oxidative pentose phosphate pathway (oxPPP), nucleotide synthesis, and mitochondrial respiration, which collectively steers cellular equilibrium to a more oxidative state.

View Article and Find Full Text PDF

Background: In adolescents and adults with tetralogy of Fallot (TOF), right ventricle (RV) electromechanical dyssynchrony (EMD) due to right bundle branch block (RBBB) is associated with reduced exercise capacity and RV dysfunction. While the development of RBBB following surgical repair of tetralogy of Fallot (rTOF) is a frequent sequela, it is not known whether EMD is present in every patient immediately following rTOF. The specific timing of the onset of RBBB following rTOF therefore provides an opportunity to assess whether acute RBBB is associated with the simultaneous acquisition of EMD.

View Article and Find Full Text PDF

Cyclooxygenase 2 overexpression suppresses Smad3 and augments ERK1/2 signaling activated by TGFβ1 in endometrial stromal cells: a novel insight into endometriosis pathogenesis.

Mol Cell Endocrinol

January 2025

The Gynecology Department, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China. Electronic address:

Research Question: To investigate the underlying mechanisms driving the opposing effects of transforming growth factor-beta 1 (TGFβ1) on the proliferation of control (CESCs) and ectopic (EESCs) endometrial stromal cells.

Design: Cell proliferation assays (CCK-8 and colony formation) were employed to assess the effects of TGFβ1 on CESC and EESC proliferation. An immortalized human endometrial stromal cell line (HESC) was used to elucidate the mechanisms behind cytostatic effect of TGFβ1 and the potential role of cyclooxygenase (COX)-2 in mediating the modulation of TGFβ1 signaling.

View Article and Find Full Text PDF

In vitro antischistosomal activity of Artemisia species.

Acta Trop

January 2025

Centre of Excellence for Pharmaceutical Sciences (Pharmacen(TM)), North-West University, Private Bag X6001, Potchefstroom 2520, South Africa. Electronic address:

Praziquantel is currently the only effective treatment for schistosomiasis, but several limitations underscore the need for new therapeutic agents. Recent promising in vitro results with Artemisia species and the success of A. annua and its active compound artemisinin in treating parasitic infections warrant the need for further studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!