Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: High-mobility group box 1 (HMGB1) is an important mediator of the inflammatory response. Its expression is increased in diabetic cardiomyopathy (DCM), but its role is unclear. We investigated the potential role and mechanism of HMGB1 in diabetes-induced myocardial fibrosis and dysfunction in mice.
Methods: In vivo, type 1 diabetes was induced by streptozotocin (STZ) in mice. HMGB1 expression was knocked down by lentivirus-mediated short-hairpin RNA (shRNA). Cardiac function was assessed by echocardiography. Total collagen deposition was assessed by Masson's trichrome and Picrosirius red staining. HMGB1, collagen I and III, and transforming growth factor β1 (TGF-β1) expression was quantified by immunostaining and western bolt analysis. In vitro, isolated neonatal cardiac fibroblasts were treated with high glucose (HG) or recombinant HMGB1 (rHMGB1). Pharmacologic (neutralizing anti-HMGB1 antibody) or genetic (shRNA-HMGB1) inhibition of HMGB1 was used to investigate the role of HMGB1 in HG-induced functional changes of cardiac fibroblasts.
Results: In vivo, HMGB1 was diffusely expressed in the myocardium of diabetic mice. HMGB1 silencing ameliorated left ventricular dysfunction and remodeling and decreased collagen deposition in diabetic mice. In vitro, HG induced HMGB1 translocation and secretion in both viable cardiomyocytes and fibroblasts. Administration of rHMGB1 dose-dependently increased the expression of collagens I and III and TGF-β1 in cardiac fibroblasts. HMGB1 inhibition reduced HG-induced collagen production, matrix metalloproteinase (MMP) activities, proliferation, and activated mitogen-activated protein kinase signaling in cardiac fibroblasts.
Conclusions: HMGB1 inhibition could alleviate cardiac fibrosis and remodeling in diabetic cardiomyopathy. Inhibition of HMGB1 might have therapeutic potential in the treatment of the disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijcard.2014.01.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!