Glioblastomas (GBMs) are the most common and malignant primary brain tumors and are aggressively treated with surgery, chemotherapy, and radiotherapy. Despite this treatment, recurrence is inevitable and survival has improved minimally over the last 50 years. Recent studies have suggested that GBMs exhibit both heterogeneity and instability of differentiation states and varying sensitivities of these states to radiation. Here, we employed an iterative combined theoretical and experimental strategy that takes into account tumor cellular heterogeneity and dynamically acquired radioresistance to predict the effectiveness of different radiation schedules. Using this model, we identified two delivery schedules predicted to significantly improve efficacy by taking advantage of the dynamic instability of radioresistance. These schedules led to superior survival in mice. Our interdisciplinary approach may also be applicable to other human cancer types treated with radiotherapy and, hence, may lay the foundation for significantly increasing the effectiveness of a mainstay of oncologic therapy. PAPERCLIP:

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3923371PMC
http://dx.doi.org/10.1016/j.cell.2013.12.029DOI Listing

Publication Analysis

Top Keywords

mathematical modeling
4
modeling pdgf-driven
4
pdgf-driven glioblastoma
4
glioblastoma reveals
4
reveals optimized
4
optimized radiation
4
radiation dosing
4
schedules
4
dosing schedules
4
schedules glioblastomas
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!