Plant ammonium tolerance has been associated with the capacity to accumulate large amounts of ammonium in the root vacuoles, to maintain carbohydrate synthesis and especially with the capacity of maintaining high levels of inorganic nitrogen assimilation in the roots. The tricarboxylic acid cycle (TCA) is considered a cornerstone in nitrogen metabolism, since it provides carbon skeletons for nitrogen assimilation. The hypothesis of this work was that the induction of anaplerotic routes of phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (MDH) and malic enzyme (NAD-ME) would enhance tolerance to ammonium nutrition. An experiment was established with tomato plants (Agora Hybrid F1) grown under different ammonium concentrations. Growth parameters, metabolite contents and enzymatic activities related to nitrogen and carbon metabolism were determined. Unlike other tomato cultivars, tomato Agora Hybrid F1 proved to be tolerant to ammonium nutrition. Ammonium was assimilated as a biochemical detoxification mechanism, thus leading to the accumulation of Gln and Asn as free amino acids in both leaves and roots as an innocuous and transitory store of nitrogen, in addition to protein synthesis. When the concentration of ammonium in the nutrient solution was high, the cyclic operation of the TCA cycle seemed to be interrupted and would operate in two interconnected branches to provide α-ketoglutarate for ammonium assimilation: one branch supported by malate accumulation and by the induction of anaplerotic PEPC and NAD-ME in roots and MDH in leaves, and the other branch supported by stored citrate in the precedent dark period.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jplph.2013.10.021DOI Listing

Publication Analysis

Top Keywords

phosphoenolpyruvate carboxylase
8
ammonium
8
nitrogen assimilation
8
induction anaplerotic
8
ammonium nutrition
8
agora hybrid
8
branch supported
8
nitrogen
5
root phosphoenolpyruvate
4
carboxylase nad-malic
4

Similar Publications

Salvianolic acid B drives gluconeogenesis and peroxisomal redox remodeling in cardiac ischemia/reperfusion injury: A metabolism regulation by metabolite signal crosstalk.

Free Radic Biol Med

January 2025

Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi 030619, China; School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China. Electronic address:

Cardiac metabolism relies on glycogen conversion by glycolysis. Glycolysis intersects fatty acid oxidation and often directs a signal crosstalk between redox metabolites. Myocardium with ischemia/reperfusion significantly diverts from normal metabolism.

View Article and Find Full Text PDF

Regulation of anaplerotic enzymes by melatonin enhances resilience to cadmium toxicity in Vigna radiata (L.) R. Wilczek.

Plant Physiol Biochem

January 2025

Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.

Melatonin (Mel) is a tryptophan-derived (N-acetyl-5-methoxytryptamine) molecule. In the present study, role of Mel in the regulation of various anaplerotic enzymes is discussed in relation to N metabolism and H-ATPase activity in mung bean under Cd stress. The application of Mel to the Cd-stressed mung bean seedlings was remarkable in improving the activity of hexokinase (35.

View Article and Find Full Text PDF

Dihydroporphyrin iron (DH-Fe) is a novel plant growth regulator that plays significant roles in plant stress resistance. We found that is extremely sensitive to low temperature (LT) with a threshold of 25°C. To evaluate whether and how DH-Fe alleviates LT stress in , different DH-Fe concentrations (0, 10, 20, and 40 μg·L) were applied to estimate its effects on C and N metabolism and antioxidative capacity in grown under 20°C.

View Article and Find Full Text PDF

Phosphoenolpyruvate (PEP) carboxylase (PEPC) has an anaplerotic role in central plant metabolism but also initiates the carbon concentrating mechanism during C photosynthesis. The C PEPC has different binding affinities (K) for PEP (K) and HCO (K), and allosteric regulation by glucose-6-phosphate (G6-P) compared to non-photosynthetic isoforms. These differences are linked to specific changes in amino acids within PEPC.

View Article and Find Full Text PDF

The roots of Panax ginseng C. A. Meyer (ginseng) are one of the traditional medicinal herbs in Asian countries and is known as the "king of all herbs".

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!