Enhanced field electron emission properties of hierarchically structured MWCNT-based cold cathodes.

Nanoscale Res Lett

Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, 1650 Blvd, Lionel-Boulet, Varennes, Quebec J3X-1S2, Canada.

Published: February 2014

Hierarchically structured MWCNT (h-MWCNT)-based cold cathodes were successfully achieved by means of a relatively simple and highly effective approach consisting of the appropriate combination of KOH-based pyramidal texturing of Si (100) substrates and PECVD growth of vertically aligned MWCNTs. By controlling the aspect ratio (AR) of the Si pyramids, we were able to tune the field electron emission (FEE) properties of the h-MWCNT cathodes. Indeed, when the AR is increased from 0 (flat Si) to 0.6, not only the emitted current density was found to increase exponentially, but more importantly its associated threshold field (TF) was reduced from 3.52 V/μm to reach a value as low as 1.95 V/μm. The analysis of the J-E emission curves in the light of the conventional Fowler-Nordheim model revealed the existence of two distinct low-field (LF) and high-field (HF) FEE regimes. In both regimes, the hierarchical structuring was found to increase significantly the associated βLF and βHF field enhancement factors of the h-MWCNT cathodes (by a factor of 1.7 and 2.2, respectively). Pyramidal texturing of the cathodes is believed to favor vacuum space charge effects, which could be invoked to account for the significant enhancement of the FEE, particularly in the HF regime where a βHF as high as 6,980 was obtained for the highest AR value of 0.6.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3918447PMC
http://dx.doi.org/10.1186/1556-276X-9-55DOI Listing

Publication Analysis

Top Keywords

field electron
8
electron emission
8
hierarchically structured
8
cold cathodes
8
pyramidal texturing
8
h-mwcnt cathodes
8
cathodes
5
enhanced field
4
emission properties
4
properties hierarchically
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!