The aggregation of amyloid-β (Aβ) peptides plays a crucial role in the onset and progression of Alzheimer's disease. Monomeric form of Aβ, indeed, could exert a physiological role. Considering the anti-oligomerization property of all-trans retinoic acid (ATRA), the involvement of monomeric Aβ1-42 in ATRA-induced neuronal differentiation has been investigated. Four-day ATRA treatment increases β-secretase 1 (BACE1) level, Aβ1-42 production, and receptor for advanced glycation end-products (RAGE) expression. RAGE is a well-recognized receptor for Aβ, and the block of both RAGE and Aβ1-42 with specific antibodies strongly impairs neurite formation in ATRA-treated cells. The involvement of Aβ1-42 and RAGE in ATRA-induced morphologic changes has been confirmed treating undifferentiated cells with different molecular assemblies of peptide: 1 μM monomeric, but not oligomeric, Aβ1-42 increases RAGE expression and favors neurite elongation. The block of RAGE completely prevents this effect. Furthermore, our data underline the involvement of the RAGE-dependent adhesion molecule amphoterin-induced gene and open reading frame-1 as downstream effector of both ATRA and Aβ1-42. In conclusion, our findings identify a novel physiological role for monomeric Aβ1-42 and RAGE in neuronal differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neurobiolaging.2014.01.002DOI Listing

Publication Analysis

Top Keywords

monomeric aβ1-42
12
aβ1-42 rage
12
neuronal differentiation
12
rage
8
physiological role
8
rage expression
8
block rage
8
aβ1-42
7
monomeric
5
rage key
4

Similar Publications

Binuclear ruthenium complexes have been investigated for potential DNA-targeted therapeutic and diagnostic applications. Studies of DNA threading intercalation, in which DNA base pairs must be broken for intercalation, have revealed means of optimizing a model binuclear ruthenium complex to obtain reversible DNA-ligand assemblies with the desired properties of high affinity and slow kinetics. Here, we used single-molecule force spectroscopy to study a binuclear ruthenium complex with a longer semi-rigid linker relative to the model complex.

View Article and Find Full Text PDF

Macrocyclic Diterpenoids from Possessing Activity Towards Autophagic Flux.

Int J Mol Sci

December 2024

State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550014, China.

Euphjatrophanes H-L (-), four new jatrophane-type and one new lathyrane-type diterpenoid, were isolated from , along with eight known diterpenoids (-). Their structures were established on the basis of extensive spectroscopic analysis and X-ray crystallographic experiments. All compounds were subjected to bioactivity evaluation using flow cytometry in autophagic flux assays with HM mCherry-GFP-LC3 cells, the human microglia cells which stably expressed the tandem monomeric mCherry-GFP-tagged LC3.

View Article and Find Full Text PDF

Cationic gemini surfactants are used due to their broad spectrum of activity, especially surface, anticorrosive and antimicrobial properties. Mixtures of cationic and anionic surfactants are also increasingly described. In order to investigate the effect of anionic additive on antimicrobial activity, experimental studies were carried out to obtain MIC (minimal inhibitory concentration) against and bacteria.

View Article and Find Full Text PDF

Dimer Is Not Double: The Unexpected Behavior of Two-Floor Peptide Nanosponge.

Molecules

December 2024

Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy.

Using the framework of an investigation of the stimuli-responsive behavior of peptide assembly on a solid surface, this study on the behavior of a chemisorbed peptide on a gold surface was performed. The studied peptide is a dimeric form of the antimicrobial peptide Trichogin GAIV, which was also modified by substituting the glycine with lysine residues, while the N-terminus octanoyl group was replaced by a lipoic one that was able to bind to the gold surface. In this way, a chemically linked peptide assembly that is pH-responsive was obtained because of the protonation/deprotonation of the sidechains of the Lys residues.

View Article and Find Full Text PDF

The α-synuclein seed amplification assay: Interpreting a test of Parkinson's pathology.

Parkinsonism Relat Disord

December 2024

Department of Translational Neuroscience and the Muhammad Ali Parkinson Center, Barrow Neurological Institute, Phoenix, AZ, USA.

The α-synuclein seed amplification assay (αSyn-SAA) sensitively detects Lewy pathology, the amyloid state of α-synuclein, in the cerebrospinal fluid (CSF) of patients with Parkinson's disease (PD). The αSyn-SAA harnesses the physics of seeding, whereby a superconcentrated solution of recombinant α-synuclein lowers the thermodynamic threshold (nucleation barrier) for aggregated α-synuclein to act as a nucleation catalyst ("seed") to trigger the precipitation (nucleation) of monomeric α-synuclein into pathology. This laboratory setup increases the signal for identifying a catalyst if one is present in the tissue examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!