Photoreduction of Pt(IV) halo-hydroxo complexes: possible hypohalous acid elimination.

Inorg Chem

Department of Chemistry, University of Missouri-Columbia, 125 Chemistry Building, Columbia, Missouri 65211-7600, United States.

Published: February 2014

Concentrated hydrogen peroxide addition to trans-Pt(PEt3)2Cl(R) [1 (R = 9-phenanthryl), 2 (R = 4-trifluoromethylphenyl)] yields hydroxo-hydroperoxo complexes trans-Pt(PEt3)2(Cl)(OOH)(OH)(R) [5 (R = 9-phenanthryl), 4 (R = 4-trifluoromethylphenyl)], where the hydroperoxo ligand is trans to R. Complex 5 is unstable and reacts with solvent CH2Cl2 to give trans,cis-Pt(PEt3)2(Cl)2(OH)(9-phenanthryl) (3). Treatment of 4 with HCl yields analogous trans,cis-Pt(PEt3)2(Cl)2(OH)(4-trifluoromethylphenyl) (6) and HBr gives trans-Pt(PEt3)2(Br)(Cl)(OH)(4-trifluoromethylphenyl) (7), where the Br and 4-trifluoromethylphenyl ligands are trans. Photolysis of 3 or 6 at 313 or 380 nm causes reduction to trans-Pt(PEt3)2Cl(R) (1 or 2, respectively). Expected coproduct HOCl is not detected, but authentic solutions of HOCl are shown to decompose under the reaction conditions. Chlorobenzene and other unidentified products that oxidize PPh3 to OPPh3 are detected in photolyzed benzene solutions. Photolysis of 3 or 6 in the presence of 2,3-dimethyl-2-butene (TME) yields the chlorohydrin (2-chloro-2,3-dimethyl-3-butanol), 3-chloro-2,3-dimethyl-1-butene, and acetone, all expected products from HOCl trapping, but additional oxidation products are also observed. Photolysis of mixed chloro-bromo complex 7 with TME yields the bromohydrin (2-bromo-2,3-dimethyl-3-butanol) and 2, consistent with cis-elimination of HOBr. Computational results (TDDFT and DFT) and photochemistry of related complexes suggest a dissociative triplet excited state reaction pathway and that HOCl elimination may occur by an incipient hydroxo radical abstraction of an adjacent halogen atom, but a pathway involving hydroxo radical reaction with solvent or TME to generate a carbon-based radical followed by halogen abstraction from Pt cannot be eliminated.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic402358sDOI Listing

Publication Analysis

Top Keywords

9-phenanthryl 4-trifluoromethylphenyl]
8
tme yields
8
hydroxo radical
8
photoreduction ptiv
4
ptiv halo-hydroxo
4
halo-hydroxo complexes
4
complexes hypohalous
4
hypohalous acid
4
acid elimination
4
elimination concentrated
4

Similar Publications

Photoreduction of Pt(IV) chloro complexes: substrate chlorination by a triplet excited state.

Inorg Chem

July 2014

Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211-7600, United States.

The Pt(IV) complexes trans-Pt(PEt3)2(Cl)3(R) 2 (R = Cl, Ph, 9-phenanthryl, 2-trifluoromethylphenyl, 4-trifluoromethylphenyl, 3-perylenyl) were prepared by chlorination of the Pt(II) complexes trans-Pt(PEt3)2(R)(Cl) 1 with Cl2(g) or PhICl2. Mixed bromo-chloro complexes trans,trans-Pt(PEt3)2(Cl)2(Br)(R) (R = 9-phenanthryl, 4-trifluoromethylphenyl), trans,cis-Pt(PEt3)2(Cl)2(Br)(4-trifluoromethylphenyl), trans,trans-Pt(PEt3)2(Br)2(Cl)(R) (R = 9-phenanthryl), and trans,cis-Pt(PEt3)2(Br)2(Cl)(4-trifluoromethylphenyl) were obtained by halide exchange or by oxidative addition of Br2 to 1 or Cl2 to trans-Pt(PEt3)2(R)(Br). Except for 2 (R = Ph, 4-trifluoromethylphenyl), all of the Pt(IV) complexes are photosensitive to UV light and undergo net halogen reductive elimination to give Pt(II) products, trans-Pt(PEt3)2(R)(X) (X = Cl, Br).

View Article and Find Full Text PDF

Photoreduction of Pt(IV) halo-hydroxo complexes: possible hypohalous acid elimination.

Inorg Chem

February 2014

Department of Chemistry, University of Missouri-Columbia, 125 Chemistry Building, Columbia, Missouri 65211-7600, United States.

Concentrated hydrogen peroxide addition to trans-Pt(PEt3)2Cl(R) [1 (R = 9-phenanthryl), 2 (R = 4-trifluoromethylphenyl)] yields hydroxo-hydroperoxo complexes trans-Pt(PEt3)2(Cl)(OOH)(OH)(R) [5 (R = 9-phenanthryl), 4 (R = 4-trifluoromethylphenyl)], where the hydroperoxo ligand is trans to R. Complex 5 is unstable and reacts with solvent CH2Cl2 to give trans,cis-Pt(PEt3)2(Cl)2(OH)(9-phenanthryl) (3). Treatment of 4 with HCl yields analogous trans,cis-Pt(PEt3)2(Cl)2(OH)(4-trifluoromethylphenyl) (6) and HBr gives trans-Pt(PEt3)2(Br)(Cl)(OH)(4-trifluoromethylphenyl) (7), where the Br and 4-trifluoromethylphenyl ligands are trans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!