Recent studies indicated that noncompensated cation-anion codoping of wide-band-gap oxide semiconductors such as anatase TiO2 significantly reduces the optical band gap and thus strongly enhances the absorption of visible light [W. Zhu et al., Phys. Rev. Lett. 103, 226401 (2009)]. We used soft x-ray spectroscopy to fully determine the location and nature of the impurity levels responsible for the extraordinarily large (∼1 eV) band gap reduction of noncompensated codoped rutile TiO2. It is shown that Cr/N codoping strongly enhances the substitutional N content, compared to single element doping. The band gap reduction is due to the formation of Cr 3d3 levels in the lower half of the gap while the conduction band minimum is comprised of localized Cr 3d and delocalized N 2p states. Band gap reduction and carrier delocalization are critical elements for efficient light-to-current conversion in oxide semiconductors. These findings thus raise the prospect of using codoped oxide semiconductors with specifically engineered electronic properties in a variety of photovoltaic and photocatalytic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.112.036404DOI Listing

Publication Analysis

Top Keywords

band gap
20
gap reduction
16
oxide semiconductors
12
band
6
gap
6
origins electronic
4
electronic band
4
reduction
4
reduction cr/n
4
cr/n codoped
4

Similar Publications

From synthesis to application, there are always certain interactions between the polar solvents and perovskite nanocrystals (NCs). To explain the effect of solvent polarity especially on the photoluminescence (PL) properties of NCs is highly desirable, especially for sensing applications. Herein We have synthesized the methylammonium lead mixed halides (MAPbClBr, where n = 0, 0.

View Article and Find Full Text PDF

We report herein the synthesis of an unprecedented isomer of perylene, dicyclohepta[cd,fg]-as-indacene bearing two phenyl groups (1-Ph) by the nickel-mediated intramolecular homocoupling of a 4,4'-biazulene derivative (2). The X-ray crystallographic analysis and theoretical calculations revealed that 1-Ph adopts a unique helically twisted geometry although the local aromaticity of azulene moieties was preserved. The double covalent linkage of the two azulene skeletons imparts significant orbital interaction, which affords near-infrared (NIR) absorption (up to 1720 nm) and remarkable redox behaviors despite its closed-shell electronic structure.

View Article and Find Full Text PDF

MoS, one of the most researched two-dimensional semiconductor materials, has great potential as the channel material in dynamic random-access memory (DRAM) due to the low leakage current inherited from the atomically thin thickness, high band gap, and heavy effective mass. In this work, we fabricate one-transistor-one-capacitor (1T1C) DRAM using chemical vapor deposition (CVD)-grown monolayer (ML) MoS in large area and confirm the ultralow leakage current of approximately 10 A/μm, significantly lower than the previous report (10 A/μm) in two-transistor-zero-capacitor (2T0C) DRAM based on a few-layer MoS flake. Through rigorous analysis of leakage current considering thermionic emission, tunneling at the source/drain, Shockley-Read-Hall recombination, and trap-assisted tunneling (TAT) current, the TAT current is identified as the primary source of leakage current.

View Article and Find Full Text PDF

Electromagnetic and optical properties of Na, Mg, and Al-adsorbed stanene nanoribbons: potential applications.

J Phys Condens Matter

January 2025

Institute for Southeast Regional Development Studies, Thu Dau Mot University, Thu Dau Mot City, Binh Duong Province, Vietnam.

Density functional theory (DFT) combined with the Viennasimulation package (VASP) was used to investigate the electronic, magnetic, and optical properties of one-dimensional stanene nanoribbons (SnNRs) and Na, Mg, and Al-adsorbed SnNRs. The SnNRs, with a width of 10 Sn atoms and hydrogen-passivated edges, retained their hexagonal honeycomb structure after structural optimization. Both pristine and adsorbed SnNRs exhibit narrow band gap semiconducting behavior, with pristine SnNRs being non-magnetic and adsorbed SnNRs showing non-zero magnetic moments.

View Article and Find Full Text PDF

Objective: To analyze the correlation between variants in the start codon of the α-globin gene and phenotypes of thalassemia, so as to provide a basis for the diagnosis and prevention of α-thalassemia.

Methods: A retrospective study was conducted on 7 patients diagnosed by Yangjiang People's Hospital and Guangzhou Hybribio Co. Ltd.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!