We show that, in conserved-mass transport processes, the steady-state distribution of mass in a subsystem is uniquely determined from the functional dependence of variance of the subsystem mass on its mean, provided that the joint mass distribution of subsystems is factorized in the thermodynamic limit. The factorization condition is not too restrictive as it would hold in systems with short-ranged spatial correlations. To demonstrate the result, we revisit a broad class of mass transport models and its generic variants, and show that the variance of the subsystem mass in these models is proportional to the square of its mean. This particular functional form of the variance constrains the subsystem mass distribution to be a gamma distribution irrespective of the dynamical rules.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.112.030601DOI Listing

Publication Analysis

Top Keywords

subsystem mass
12
conserved-mass transport
8
transport processes
8
variance subsystem
8
mass distribution
8
mass
7
gammalike mass
4
mass distributions
4
distributions mass
4
mass fluctuations
4

Similar Publications

Medicinal plants often harbour various endophytic actinomycetia, which are well known for their potent antimicrobial properties and plant growth-promoting traits. In this study, we isolated an endophytic actinomycetia, A13, from the leaves of tea clone P312 from the MEG Tea Estate, Meghalaya, India. The isolate A13 was identified as Streptomyces sp.

View Article and Find Full Text PDF

Core Payload of the Space Gravitational Wave Observatory: Inertial Sensor and Its Critical Technologies.

Sensors (Basel)

November 2024

Center for Gravitational Wave Experiment, National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.

Since Einstein's prediction regarding the existence of gravitational waves was directly verified by the ground-based detector Advanced LIGO, research on gravitational wave detection has garnered increasing attention. To overcome limitations imposed by ground vibrations and interference at arm's length, a space-based gravitational wave detection initiative was proposed, which focuses on analyzing a large number of waves within the frequency range below 1 Hz. Due to the weak signal intensity, the TMs must move along their geodesic orbit with a residual acceleration less than 10 m/s/Hz.

View Article and Find Full Text PDF

Second-Order Mass-Weighting Scheme for Atom-Centered Density Matrix Propagation Molecular Dynamics.

J Chem Theory Comput

October 2024

Scuola Superiore Meridionale, Largo San Marcellino 10, Napoli I-80138, Italy.

The atom-centered density matrix propagation (ADMP) method is an extended Lagrangian approach to ab initio molecular dynamics, which includes the density matrix in an orthonormalized atom-centered Gaussian basis as additional, fictitious, electronic degrees of freedom, classically propagated along with the nuclear ones. A high adiabaticity between the nuclear and electronic subsystems is mandatory in order to keep the trajectory close to the Born-Oppenheimer (BO) surface. In this regard, the fictitious electronic mass , being a symmetric, nondiagonal matrix in its most general form, represents a free parameter, exploitable to optimize the propagation of the electronic density.

View Article and Find Full Text PDF

Graph-based, dynamics-preserving reduction of (bio)chemical systems.

J Math Biol

September 2024

Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.

Complex dynamical systems are often governed by equations containing many unknown parameters whose precise values may or may not be important for the system's dynamics. In particular, for chemical and biochemical systems, there may be some reactions or subsystems that are inessential to understanding the bifurcation structure and consequent behavior of a model, such as oscillations, multistationarity and patterning. Due to the size, complexity and parametric uncertainties of many (bio)chemical models, a dynamics-preserving reduction scheme that is able to isolate the necessary contributors to particular dynamical behaviors would be useful.

View Article and Find Full Text PDF

This article investigates an optimized containment control problem for multiagent systems (MASs), where all followers are subject to deferred full-state constraints. A universal nonlinear transformation is proposed for simultaneously handling the cases with and without constraints. Particularly, for the constrained case, initial values of states are flexibly managed to the midpoint between upper and lower boundaries by utilizing a state-shifting function, thus eliminating the initial restriction conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!