Symmetric multivariate polynomials as a basis for three-boson light-front wave functions.

Phys Rev E Stat Nonlin Soft Matter Phys

Department of Physics, University of Minnesota-Duluth, Duluth, Minnesota 55812, USA.

Published: December 2013

We develop a polynomial basis to be used in numerical calculations of light-front Fock-space wave functions. Such wave functions typically depend on longitudinal momentum fractions that sum to unity. For three particles, this constraint limits the two remaining independent momentum fractions to a triangle, for which the three momentum fractions act as barycentric coordinates. For three identical bosons, the wave function must be symmetric with respect to all three momentum fractions. Therefore, as a basis, we construct polynomials in two variables on a triangle that are symmetric with respect to the interchange of any two barycentric coordinates. We find that, through the fifth order, the polynomial is unique at each order, and, in general, these polynomials can be constructed from products of powers of the second- and third-order polynomials. The use of such a basis is illustrated in a calculation of a light-front wave function in two-dimensional ϕ(4) theory; the polynomial basis performs much better than the plane-wave basis used in discrete light-cone quantization.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.88.063307DOI Listing

Publication Analysis

Top Keywords

momentum fractions
16
wave functions
12
polynomials basis
8
light-front wave
8
polynomial basis
8
three momentum
8
barycentric coordinates
8
wave function
8
symmetric respect
8
basis
6

Similar Publications

Background And Purpose: This study assessed the treatment time of online adaptive (i.e. Adapt-to-Shape, ATS) and virtual couch shift (i.

View Article and Find Full Text PDF

This study analyzes the impact of slip-dependent zeta potential on the heat transfer characteristics of nanofluids in cylindrical microchannels with consideration of thermal radiation effects. An analytical model is developed, accounting for the coupling between surface potential and interfacial slip. The linearized Poisson-Boltzmann equation, along with the momentum and energy conservation equations, is solved analytically to obtain the electrical potential field, velocity field, temperature distribution, and Nusselt number for both slip-dependent (SD) and slip-independent (SI) zeta potentials.

View Article and Find Full Text PDF

This study examines heat transfer and nanofluid-enhanced blood flow behaviour in stenotic arteries under inflammatory conditions, addressing critical challenges in cardiovascular health. The blood, treated as a Newtonian fluid, is augmented with gold nanoparticles to improve thermal conductivity and support drug delivery applications. A hybrid methodology combining finite element method (FEM) for numerical modelling and artificial neural networks (ANN) for stability prediction provides a robust analytical framework.

View Article and Find Full Text PDF

Aims: Contrast-induced nephropathy (CIN) is a condition characterized by rapidly decreasing renal funciton following by the application of contrast material. Precutaneous coronary intervention (PCI) is a life-saving treatment method that should be applied under emergent conditions. Unfortunately, the incidence of CIN after PCI is common.

View Article and Find Full Text PDF

Context: Type 2 diabetes (DM2) is an emerging disease in the pediatric population. DM2 is associated with metabolic-associated fatty liver disease (MAFLD). High-density lipoproteins (HDLs) are lipoproteins that are believed to have atheroprotective properties that reduce the risk of cardiovascular disease (CVD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!