Using high-speed confocal microscopy, we measure the particle positions in a colloidal suspension under large-amplitude oscillatory shear. Using the particle positions, we quantify the in situ anisotropy of the pair-correlation function, a measure of the Brownian stress. From these data we find two distinct types of responses as the system crosses over from equilibrium to far-from-equilibrium states. The first is a nonlinear amplitude saturation that arises from shear-induced advection, while the second is a linear frequency saturation due to competition between suspension relaxation and shear rate. In spite of their different underlying mechanisms, we show that all the data can be scaled onto a master curve that spans the equilibrium and far-from-equilibrium regimes, linking small-amplitude oscillatory to continuous shear. This observation illustrates a colloidal analog of the Cox-Merz rule and its microscopic underpinning. Brownian dynamics simulations show that interparticle interactions are sufficient for generating both experimentally observed saturations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.88.062309 | DOI Listing |
Eur Phys J E Soft Matter
January 2025
Institut für Theoretische Physik 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Bavaria, Germany.
We employ graph neural networks (GNN) to analyse and classify physical gel networks obtained from Brownian dynamics simulations of particles with competing attractive and repulsive interactions. Conventionally such gels are characterized by their position in a state diagram spanned by the packing fraction and the strength of the attraction. Gel networks at different regions of such a state diagram are qualitatively different although structural differences are subtile while dynamical properties are more pronounced.
View Article and Find Full Text PDFNat Chem
January 2025
State Key Laboratory of Advanced Drug Delivery and Release Systems, Liangzhu Laboratory, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
Vesicles play critical roles in cellular materials storage and signal transportation, even in the formation of organelles and cells. Natural vesicles are composed of a lipid layer that forms a membrane for the enclosure of substances inside. Here we report a coacervate vesicle formed by the liquid-liquid phase separation of cholesterol-modified DNA and histones.
View Article and Find Full Text PDFChemphyschem
January 2025
University of Minnesota Twin Cities, Chemical Engineering and Materials Science, 421 Washington Avenue SE, 55455, Minneapolis, UNITED STATES OF AMERICA.
Broader adoption of 4D ultrafast electron microscopy (UEM) for the study of chemical, materials, and quantum systems is being driven by development of new instruments as well as continuous improvement and characterization of existing technologies. Perhaps owing to the still-high barrier to entry, the full range of capabilities of laser-driven 4D UEM instruments has yet to be established, particularly when operated at extremely low beam currents (~fA). Accordingly, with an eye on beam stability, we have conducted particle tracing simulations of unconventional off-axis photoemission geometries in a UEM equipped with a thermionic-emission gun.
View Article and Find Full Text PDFPhys Imaging Radiat Oncol
October 2024
Aarhus University Hospital, Danish Centre for Particle Therapy, Aarhus N, Denmark.
Background And Purpose: Radiotherapy for paediatric posterior fossa tumours may cause complications in the brainstem and upper spinal cord due to high doses. With proton therapy (PT) this risk may increase due to higher relative biological effectiveness (RBE) from elevated linear energy transfer (LET). This study assesses variations in LET in the brainstem and spinal cord in proton treatment plans from European centres.
View Article and Find Full Text PDFWaste Manag
January 2025
VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Finland.
Battery technology has attained a key position as an energy storage technology in decarbonization of energy systems. Lithium-ion batteries have become the dominant technology currently used in consumer appliances, electric vehicles (EVs), and industrial applications. However, lithium-ion batteries are not alike and can have different cathode chemistries which makes their recycling more complex.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!