We present a theoretical investigation of thermal fluctuation statistics in a molecular motor. Energy transfer in the motor is described using a multidimensional discrete master equation with nearest-neighbor hopping. In this theory, energy transfer leads to statistical correlations between thermal fluctuations in different degrees of freedom. For long times, the energy transfer is a multivariate diffusion process with constant drift and diffusion. The fluctuations and drift align in the strong-coupling limit enabling a one-dimensional description along the coupled coordinate. We derive formal expressions for the probability distribution and simulate single trajectories of the system in the near- and far-from-equilibrium limits both for strong and weak coupling. Our results show that the hopping statistics provide an opportunity to distinguish different operating regimes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.88.062136 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!