AI Article Synopsis

  • The study examines the topography and leakage current behaviors of TiO2 films created through atomic layer deposition on RuO2 electrodes, using either TiCl4 or Ti(O-i-C3H7)4 as precursors.
  • For both types of films, the leakage current is primarily concentrated in elevated grain areas rather than along the grain boundaries.
  • It was found that the TiCl4-based films exhibit a higher and more localized leakage current compared to those based on Ti(O-i-C3H7)4, with both films maintaining a similar physical thickness of about 20 nm.

Article Abstract

Topography and leakage current maps of TiO2 films grown by atomic layer deposition on RuO2 electrodes using either a TiCl4 or a Ti(O-i-C3H7)4 precursor were characterized at nanoscale by conductive atomic force microscopy (CAFM). For both films, the leakage current flows mainly through elevated grains and not along grain boundaries. The overall CAFM leakage current is larger and more localized for the TiCl4-based films (0.63 nm capacitance equivalent oxide thickness, CET) compared to the Ti(O-i-C3H7)4-based films (0.68 nm CET). Both films have a physical thickness of ∼20 nm. The nanoscale leakage currents are consistent with macroscopic leakage currents from capacitor structures and are correlated with grain characteristics observed by topography maps and transmission electron microscopy as well as with X-ray diffraction.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am4049139DOI Listing

Publication Analysis

Top Keywords

leakage current
12
tio2 films
8
films grown
8
grown atomic
8
atomic layer
8
layer deposition
8
deposition ruo2
8
ruo2 electrodes
8
leakage currents
8
films
6

Similar Publications

The effective prevention and treatment of anastomotic leakage after intestinal anastomosis for colorectal diseases is still a major clinical challenge. In order to assist intestinal anastomosis healing and avoid anastomotic leakage caused by high tension, low blood supply or infection, we designed a double-layer nanofiber intestinal anastomosis scaffold, which was composed of electrospun PTMC/PHA nanofibers as the main layer, and electrospun PVA/OHA-Gs nanofibers with antibacterial properties as the antibacterial surface layer. This double-layer scaffold has good toughness, its maximum tensile force value could reach 8 N, elongation could reach 400 %, and it has hydrophilic properties, and its contact angle was about 60°.

View Article and Find Full Text PDF

Maternal immune activation (MIA), a maternal stressor, increases risk for neuropsychiatric diseases, such as Major Depressive Disorder in offspring. MIA of toll-like receptor 7 (TLR7) initiates an immune response in mother and fetuses in a sex-selective manner. The paraventricular nucleus of the hypothalamus (PVN), a brain region that is sexually dimorphic and regulates hypothalamic-pituitary-adrenal (HPA) stress responses, have been tied to stress-related behaviors (i.

View Article and Find Full Text PDF

GaN is rapidly gaining attention for implementation in power electronics but is still impacted by its high density of threading dislocations (TDs), which have been shown to facilitate current leakage through devices limiting their performance and reliability. Here, we discuss a novel implementation of photoluminescence (PL) imaging to study TDs in regions within vertically structured p-i-n GaN (PIN) diodes consisting of metalorganic chemical vapor deposition (MOCVD) epitaxial layers grown on ammonothermal GaN (am-GaN) substrates. PL imaging with a sub-bandgap excitation energy (3.

View Article and Find Full Text PDF

The production of medicinal plants under stressful environments offers an alternative to meet the requirements of sustainable agriculture. The action of mycorrhizal fungus; Funneliformis mosseae and zinc in stimulating growth and stress tolerance in medicinal plants is an intriguing area of research. The current study evaluated the combined use of nano-zinc and mycorrhizal fungus on the physiochemical responses of Dracocephalum moldavica under salinity stress.

View Article and Find Full Text PDF

Introduction: Preoperative identification of the site of rectal cancer surgery is crucial for ensuring accurate tumor localization and resection. Commonly employed methods include contrast-enhanced enterography and endoscopic marking techniques, such as clipping and India ink tattooing. However, India ink tattooing poses challenges, including obstruction of the surgical field, ink leakage into the abdominal cavity, and potential complications such as peritonitis and adhesive bowel obstruction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!