Developments in nanotechnology and in the formulation of liposomal systems provide the opportunity for cosmetic dermatology to design novel delivery systems. Determination of their physico-chemical parameters has importance when developing a nano-delivery system. The present study highlights some technological aspects/characteristics of liposomes formulated from egg or soy lecithins for topical use. Alterations in the pH, viscosity, surface tension, and microscopic/macroscopic appearance of these vesicular systems were investigated. The chemical composition of the two types of lecithin was checked by mass spectrometry. Caffeine, as a model molecule, was encapsulated into multilamellar vesicles prepared from the two types of lecithin: then zeta potential, membrane fluidity, and encapsulation efficiency were compared. According to our observations, samples prepared from the two lecithins altered the pH in opposite directions: egg lecithin increased it while soy lecithin decreased it with increased lipid concentration. Our EPR spectroscopic results showed that the binding of caffeine did not change the membrane fluidity in the temperature range of possible topical use (measured between 2 and 50 °C). Combining our results on encapsulation efficiency for caffeine (about 30% for both lecithins) with those on membrane fluidity data, we concluded that the interaction of caffeine with the liposomal membrane does not change the rotational motion of the lipid molecules close to the head group region. In conclusion, topical use of egg lecithin for liposomal formulations can be preferred if there are no differences in the physico-chemical properties due to the encapsulated drugs, because the physiological effects of egg lecithin vesicles on skin are significantly better than that of soy lecithin liposomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3867246PMC
http://dx.doi.org/10.3797/scipharm.1305-11DOI Listing

Publication Analysis

Top Keywords

soy lecithin
12
membrane fluidity
12
egg lecithin
12
vesicles prepared
8
egg soy
8
lecithin
8
types lecithin
8
encapsulation efficiency
8
egg
5
liposomes topical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!