Expression and functional analysis of putative vacuolar Ca2+-transporters (CAXs and ACAs) in roots of salt tolerant and sensitive rice cultivars.

Protoplasma

Plant Physiology and Biochemistry Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand.

Published: September 2014

Vacuolar Ca2+-transporters could play an important role for salt tolerance in rice (Oryza sativa L.) root. Here, we compared the expression profiles of putative vacuolar cation/H+ exchanger (CAX) and calmodulin-regulated autoinhibited Ca2+-ATPase (ACA) in rice roots of salt tolerant cv. Pokkali and salt sensitive cv. IR29. In addition to five putative vacuolar CAX genes in the rice genome, a new CAX gene (OsCAX4) has been annotated. In the present study, we isolated the OsCAX4 gene and showed that its encoded protein possesses a unique transmembrane structure and is potentially involved in transporting not only Ca2+ but also Mn2+ and Cu2+. These six OsCAX genes differed in their mRNA expression pattern in roots of tolerant versus sensitive rice cultivars exposed to salt stress. For example, OsCAX4 showed abundant expression in IR29 (sensitive) upon prolonged salt stress. The mRNA expression profile of four putative vacuolar Ca2+-ATPases (OsACA4-7) was also examined. Under control conditions, the mRNA levels of OsACA4, OsACA5, and OsACA7 were relatively high and similar among IR29 and Pokkali. Upon salt stress, only OsACA4 showed first a decrease in its expression in Pokkali (tolerant), followed by a significant increase. Based on these results, a role of vacuolar Ca2+ transporter for salt tolerance in rice root was discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00709-014-0615-2DOI Listing

Publication Analysis

Top Keywords

putative vacuolar
16
salt stress
12
vacuolar ca2+-transporters
8
salt
8
roots salt
8
salt tolerant
8
sensitive rice
8
rice cultivars
8
salt tolerance
8
tolerance rice
8

Similar Publications

The proteomic response of to amphotericin B (AmB) reveals the involvement of the RTA-like protein RtaA in AmB resistance.

Microlife

December 2024

Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Adolf-Reichwein-Str. 23, 07745 Jena, Germany.

The polyene antimycotic amphotericin B (AmB) and its liposomal formulation AmBisome belong to the treatment options of invasive aspergillosis caused by . Increasing resistance to AmB in clinical isolates of species is a growing concern, but mechanisms of AmB resistance remain unclear. In this study, we conducted a proteomic analysis of exposed to sublethal concentrations of AmB and AmBisome.

View Article and Find Full Text PDF

Despite a high sucrose accumulation in its taproot vacuoles, sugar beet (Beta vulgaris subsp. vulgaris) is sensitive to freezing. Earlier, a taproot-specific accumulation of raffinose was shown to have beneficial effects on the freezing tolerance of the plant.

View Article and Find Full Text PDF

Hepatitis C Virus NS5A Activates Mitophagy Through Cargo Receptor and Phagophore Formation.

Pathogens

December 2024

Department of Biochemistry & Molecular Biology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.

Chronic HCV infection is a risk factor for end-stage liver disease, leading to a major burden on public health. Mitophagy is a specific form of selective autophagy that eliminates mitochondria to maintain mitochondrial integrity. HCV NS5A is a multifunctional protein that regulates the HCV life cycle and may induce host mitophagy.

View Article and Find Full Text PDF

Background: The global prevalence of diabetes among adults over 18 years of age is expected to increase from 10.5% to 12.2% (between 2021 and 2045).

View Article and Find Full Text PDF

Optimized production of concanamycins using a rational metabolic engineering strategy.

Metab Eng

November 2024

Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA. Electronic address:

Plecomacrolides, such as concanamycins and bafilomycins, are potent and specific inhibitors of vacuolar-type ATPase. Concanamycins are 18-membered macrolides with promising therapeutic potential against multiple diseases, including viral infection, osteoporosis, and cancer. Due to the complexity of their total synthesis, the production of concanamycins is only achieved through microbial fermentation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!