The presence of acquired multidrug resistance (MDR) is one of the primary impediments to the success of chemotherapy. MDR is often a result of overexpression of ATP-binding cassette (ABC) transporters, which are involved in the extrusion of therapeutic drugs. Recently, it was shown that several ABC transporters could be modulated by specific tyrosine-kinase inhibitors (TKIs). Ponatinib, a multi-targeted TKI, inhibits the activity of BCR-ABL with very high potency and broad specificity, including the T315I mutation which confers resistance to other TKIs. It was reported that ponatinib was capable of reversing breast cancer resistance protein (BCRP)- and P-glycoprotein (P-gp)-mediated MDR. In the present study, we report for the first time that ponatinib also potentiates the cytotoxicity of widely used therapeutic substrates of MRP7, such as paclitaxel, docetaxel, vincristine and vinblastine. Ponatinib significantly enhances the accumulation of [3H]-paclitaxel in cells expressing MRP7. Furthermore, accumulation of [3H]-paclitaxel was achieved by inhibition of MRP7-mediated transport. Ponatinb limited drug export via MRP7 by multiple mechanisms. In addition to inhibition of pump function, ponatinib also downregulated MRP7 protein expression in a time- and concentration-dependent manner. Thus, ponatinib may represent a potential reversal agent for the treatment of MDR and may be useful for combination therapy in MDR cancer patients in clinical practice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3975990PMC
http://dx.doi.org/10.3892/or.2014.3002DOI Listing

Publication Analysis

Top Keywords

ponatinib enhances
8
abc transporters
8
accumulation [3h]-paclitaxel
8
ponatinib
7
mdr
5
enhances anticancer
4
anticancer drug
4
drug sensitivity
4
sensitivity mrp7-overexpressing
4
mrp7-overexpressing cells
4

Similar Publications

Endothelial-secreted Endocan activates PDGFRA and regulates vascularity and spatial phenotype in glioblastoma.

Nat Commun

January 2025

The Intellectual and Developmental Disabilities Research Center, The Semel Institute for Neuroscience and Human Behavior, and The Broad Stem Cell Research Center, The Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.

Extensive neovascularization is a hallmark of glioblastoma (GBM). In addition to supplying oxygen and nutrients, vascular endothelial cells provide trophic support to GBM cells via paracrine signaling. Here we report that Endocan (ESM1), an endothelial-secreted proteoglycan, confers enhanced proliferative, migratory, and angiogenic properties to GBM cells and regulates their spatial identity.

View Article and Find Full Text PDF

The TOPASE study was set up to evaluate the outcomes of chronic myeloid leukaemia [CML] patients treated with ponatinib (PON) in a real-world setting in France. One hundred and twenty CML patients, 105 in chronic phase (CP), 8 in accelerated phase (AP) and 7 in blastic phase (BP) were included. Fifty-one (49%) of the CP-CML patients were in third line of treatment.

View Article and Find Full Text PDF

Ponatinib: A Review of the History of Medicinal Chemistry behind Its Development.

Pharmaceuticals (Basel)

October 2024

Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos-Fiocruz, Manguinhos, Rio de Janeiro 21041-250, RJ, Brazil.

The primary treatment for chronic myeloid leukemia (CML) involves first- and second-generation tyrosine kinase inhibitors (TKIs), such as imatinib, nilotinib, bosutinib, and dasatinib. However, these medications are ineffective against mutations in the kinase domain of the ABL1 protein, particularly in the protein with the T315I mutation. To address this, ponatinib (PNT), a third-generation inhibitor, was developed.

View Article and Find Full Text PDF

Ischemic stroke (IS) is a major cause of mortality and morbidity worldwide. Beyond thrombolysis, strategies targeting anti-oxidative apoptosis and angiogenesis are considered prospective therapeutic strategies. Nevertheless, existing natural and clinical remedies have limited efficacy in the management of IS.

View Article and Find Full Text PDF

Chronic myeloid leukemia (CML) treatment with Bcr-Abl tyrosine kinase inhibitors (TKIs) has significantly improved patient outcomes, yet challenges such as drug resistance and persistence of leukemic stem cells persist. This study explores the potential of naringenin, a natural flavonoid, to enhance the efficacy of Bcr-Abl TKIs in CML therapy. We showed that naringenin reduces viability of a panel of CML cell lines regardless of varying cellular origin and genetic mutations, and acts synergistically with dasatinib and ponatinib.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!