Excess fat accumulation renders the liver more vulnerable to ethanol, but it is still unclear how alcohol enhances lipid dysmetabolism and oxidative stress in a pre-existing steatosis condition. The effects produced by binge ethanol consumption in the liver of male Wistar rats fed a standard (Ctrl) or a high-fat diet HFD were compared. The liver status was checked through tissue histology and standard serum parameters. Alteration of hepatic lipid homeostasis and consequent oxidative unbalance were assessed by quantifying the mRNA expression of the lipid-regulated peroxisome proliferator-activated receptors (PPARs), of the cytochromes CYP2E1 and CYP4A1, and of some antioxidant molecules such as the metallothionein isoforms MT1 and MT2 and the enzymes catalase and superoxide dismutase. The number of adipose differentiation-related protein (ADRP)-positive lipid droplets (LDs) was evaluated by immunohistochemical staining. As a response to the double insult of diet and ethanol the rat liver showed: (1) a larger increase in fat accumulation within ADRP-positive LDs; (2) stimulation of lipid oxidation in the attempt to limit excess fat accumulation; (3) induction of antioxidant proteins (MT2, in particular) to protect the liver from the ethanol-induced overproduction of oxygen radicals. The data indicate an increased susceptibility of fatty liver to ethanol and suggest that the synergistic effect of diet and ethanol on lipid dysmetabolism might be mediated, at least in part, by PPARs and cytochromes CYP4A1 and CYP2E1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13105-013-0308-x | DOI Listing |
World J Gastroenterol
December 2024
Department of Immunology, Medical School, Nantong University, Nantong 226001, Jiangsu Province, China.
Background: Metabolic dysfunction-associated fatty liver disease (MAFLD) is one of the main chronic liver diseases. However, the roles of mitochondrial carnitine palmitoyl transferase-II (CPT-II) downregulation and liver cancer stem cell (LCSC) activation remain to be identified.
Aim: To investigate the dynamic alterations in CPT-II inactivity and LCSC activation during the malignant progression of MAFLD.
World J Exp Med
December 2024
Human Genetics Unit, Indian Statistical Institute, Kolkata 700108, West Bengal, India.
Pancreatic cancer (PanCa) is a catastrophic disease, being third lethal in both the genders around the globe. The possible reasons are extreme disease invasiveness, highly fibrotic and desmoplastic stroma, dearth of confirmatory diagnostic approaches and resistance to chemotherapeutics. This inimitable tumor microenvironment (TME) or desmoplasia with excessive extracellular matrix accumulation, create an extremely hypovascular, hypoxic and nutrient-deficient zone inside the tumor.
View Article and Find Full Text PDFSimilar to the mammalian hepatocytes, Drosophila oenocytes accumulate fat during fasting, but it is unclear how they communicate with the fat body, the major lipid source. Using a modified protocol for prolonged starvation, we show that knockdown (KD) of the sole delta 9 desaturase, Desat1 (SCD in mammals), specifically in oenocytes leads to more saturated lipids in the hemolymph and reduced triacylglycerol (TAG) storage in the fat body. Additionally, oenocytes with Desat1 KD exhibited an accumulation of lipoproteins and actin filaments at the cortex, which decreased lipoproteins in the hemolymph.
View Article and Find Full Text PDFToxicol Appl Pharmacol
December 2024
Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, People's Republic of China. Electronic address:
Non-alcoholic fatty liver disease (NAFLD) is a major cause of chronic liver disease. The present work aimed to explore the function of regulator of Calcineurin 2 (RCAN2) in NAFLD and its related mechanisms. Mice were fed with high-fat diet (HFD) to construct NAFLD model.
View Article and Find Full Text PDFMetabolism
December 2024
Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, United States of America.
Aims: NAD deficiency underlies obesity-induced metabolic disturbances. This study evaluated dihydronicotinamide riboside (NRH), a potent NAD enhancer, in lean and obese mice and explored whether NRH operates through a unique mechanism involving adenosine kinase (ADK), an enzyme critical for NRH-driven NAD synthesis.
Methods: Pharmacokinetic and pharmacodynamic analyses were performed following a single 250 mg/kg intraperitoneal injection of NRH in healthy mice.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!