Effects of binge ethanol on lipid homeostasis and oxidative stress in a rat model of nonalcoholic fatty liver disease.

J Physiol Biochem

Dipartimento di Scienze della Terra, dell'Ambiente e della Vita (DISTAV), Università di Genova, Corso Europa 26, 16132, Genoa, Italy.

Published: June 2014

AI Article Synopsis

  • - Excess fat in the liver makes it more susceptible to damage from alcohol, but the exact mechanisms of how alcohol affects fat metabolism and oxidative stress in fatty livers are still not fully understood.
  • - Research on male Wistar rats was conducted to compare the effects of binge drinking in those fed a normal diet versus a high-fat diet, examining liver health through various histological and biochemical markers.
  • - Findings revealed that a combination of a high-fat diet and alcohol consumption led to greater fat accumulation, increased lipid oxidation, and activation of antioxidant proteins to combat oxidative stress in the liver, suggesting a complex interplay between diet and alcohol in liver health.

Article Abstract

Excess fat accumulation renders the liver more vulnerable to ethanol, but it is still unclear how alcohol enhances lipid dysmetabolism and oxidative stress in a pre-existing steatosis condition. The effects produced by binge ethanol consumption in the liver of male Wistar rats fed a standard (Ctrl) or a high-fat diet HFD were compared. The liver status was checked through tissue histology and standard serum parameters. Alteration of hepatic lipid homeostasis and consequent oxidative unbalance were assessed by quantifying the mRNA expression of the lipid-regulated peroxisome proliferator-activated receptors (PPARs), of the cytochromes CYP2E1 and CYP4A1, and of some antioxidant molecules such as the metallothionein isoforms MT1 and MT2 and the enzymes catalase and superoxide dismutase. The number of adipose differentiation-related protein (ADRP)-positive lipid droplets (LDs) was evaluated by immunohistochemical staining. As a response to the double insult of diet and ethanol the rat liver showed: (1) a larger increase in fat accumulation within ADRP-positive LDs; (2) stimulation of lipid oxidation in the attempt to limit excess fat accumulation; (3) induction of antioxidant proteins (MT2, in particular) to protect the liver from the ethanol-induced overproduction of oxygen radicals. The data indicate an increased susceptibility of fatty liver to ethanol and suggest that the synergistic effect of diet and ethanol on lipid dysmetabolism might be mediated, at least in part, by PPARs and cytochromes CYP4A1 and CYP2E1.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13105-013-0308-xDOI Listing

Publication Analysis

Top Keywords

fat accumulation
12
binge ethanol
8
ethanol lipid
8
lipid homeostasis
8
oxidative stress
8
fatty liver
8
excess fat
8
lipid dysmetabolism
8
ppars cytochromes
8
diet ethanol
8

Similar Publications

Background: Metabolic dysfunction-associated fatty liver disease (MAFLD) is one of the main chronic liver diseases. However, the roles of mitochondrial carnitine palmitoyl transferase-II (CPT-II) downregulation and liver cancer stem cell (LCSC) activation remain to be identified.

Aim: To investigate the dynamic alterations in CPT-II inactivity and LCSC activation during the malignant progression of MAFLD.

View Article and Find Full Text PDF

Pancreatic cancer (PanCa) is a catastrophic disease, being third lethal in both the genders around the globe. The possible reasons are extreme disease invasiveness, highly fibrotic and desmoplastic stroma, dearth of confirmatory diagnostic approaches and resistance to chemotherapeutics. This inimitable tumor microenvironment (TME) or desmoplasia with excessive extracellular matrix accumulation, create an extremely hypovascular, hypoxic and nutrient-deficient zone inside the tumor.

View Article and Find Full Text PDF

Similar to the mammalian hepatocytes, Drosophila oenocytes accumulate fat during fasting, but it is unclear how they communicate with the fat body, the major lipid source. Using a modified protocol for prolonged starvation, we show that knockdown (KD) of the sole delta 9 desaturase, Desat1 (SCD in mammals), specifically in oenocytes leads to more saturated lipids in the hemolymph and reduced triacylglycerol (TAG) storage in the fat body. Additionally, oenocytes with Desat1 KD exhibited an accumulation of lipoproteins and actin filaments at the cortex, which decreased lipoproteins in the hemolymph.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease (NAFLD) is a major cause of chronic liver disease. The present work aimed to explore the function of regulator of Calcineurin 2 (RCAN2) in NAFLD and its related mechanisms. Mice were fed with high-fat diet (HFD) to construct NAFLD model.

View Article and Find Full Text PDF

Aims: NAD deficiency underlies obesity-induced metabolic disturbances. This study evaluated dihydronicotinamide riboside (NRH), a potent NAD enhancer, in lean and obese mice and explored whether NRH operates through a unique mechanism involving adenosine kinase (ADK), an enzyme critical for NRH-driven NAD synthesis.

Methods: Pharmacokinetic and pharmacodynamic analyses were performed following a single 250 mg/kg intraperitoneal injection of NRH in healthy mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: