Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: The objective of this experiment is to establish a continuous postmortem circulation in the vascular system of porcine lungs and to evaluate the pulmonary distribution of the perfusate. This research is performed in the bigger scope of a revascularization project of Thiel embalmed specimens. This technique enables teaching anatomy, practicing surgical procedures and doing research under lifelike circumstances.
Methods: After cannulation of the pulmonary trunk and the left atrium, the vascular system was flushed with paraffinum perliquidum (PP) through a heart-lung machine. A continuous circulation was then established using red PP, during which perfusion parameters were measured. The distribution of contrast-containing PP in the pulmonary circulation was visualized on computed tomography. Finally, the amount of leak from the vascular system was calculated.
Results: A reperfusion of the vascular system was initiated for 37 min. The flow rate ranged between 80 and 130 ml/min throughout the experiment with acceptable perfusion pressures (range: 37-78 mm Hg). Computed tomography imaging and 3D reconstruction revealed a diffuse vascular distribution of PP and a decreasing vascularization ratio in cranial direction. A self-limiting leak (i.e. 66.8% of the circulating volume) towards the tracheobronchial tree due to vessel rupture was also measured.
Conclusions: PP enables circulation in an isolated porcine lung model with an acceptable pressure-flow relationship resulting in an excellent recruitment of the vascular system. Despite these promising results, rupture of vessel walls may cause leaks. Further exploration of the perfusion capacities of PP in other organs is necessary. Eventually, this could lead to the development of reperfused Thiel embalmed human bodies, which have several applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000357818 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!