The hypothalamus-pituitary-thyroid (HPT) axis represents a complex, non-linear thyroid hormone system in vertebrates governed by numerous variables. The common modeling approach until now aims at a comprehensive inclusion of all known physiological influences. In contrast, we develop a parsimonious mathematical model that integrates the hypothalamus-pituitary (HP) complex as an endocrinologic unit based on a parameterized negative exponential function between free thyroxine (FT4) as stimulus and thyrotropin (thyroid stimulating hormone, TSH) as response. Model validation with clinical data obtained from geographically different hospitals revealed a goodness-of-fit largely ranging between 90% < R² < 99%, each HP characteristic curve being uniquely defined for each individual akin to a fingerprint. Specifically, the HP model represents the afferent feedback limb of the HPT axis while the efferent limb is mathematically depicted by TSH input to the thyroid gland which responds by secreting T4 as its chief output. The complete HPT axis thus forms a closed loop system with negative feedback resulting in an equilibrium state or homeostasis under defined conditions illustrated by the intersection of the HP and thyroid response characteristics. In this treatise, we demonstrate how this mathematical approach facilitates homeostatic set points computation for personalized dosing of thyroid medications of patients to individualized euthyroid states.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mbs.2014.01.001 | DOI Listing |
Crit Rev Toxicol
January 2025
Product Stewardship, Science & Regulatory, Shell Global Solutions International B.V. The Hague, the Netherlands.
Xylene substances have wide industrial and consumer uses and are currently undergoing dossier and substance evaluation under Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) for further toxicological testing including consideration of an additional neurotoxicological testing cohort to an extended one-generation reproduction toxicity (EOGRT) study. New repeated dose study data on xylenes identify the thyroid as a potential target tissue, and therefore a weight of evidence review is provided to investigate whether or not xylene-mediated changes on the hypothalamus-pituitary-thyroid (HPT) axis are secondary to liver enzymatic induction and are of a magnitude that is relevant for neurological human health concerns. Multiple published studies confirm xylene-mediated increases in liver weight, hepatocellular hypertrophy, and liver enzymatic induction the oral or inhalation routes, including an increase in uridine 5'-diphospho-glucuronosyltransferase (UDP-GT) activity, the key step in thyroid hormone metabolism in rodents.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, Jabłonna, 05-110, Poland.
Since the early discovery of QRFP43, intensive research has been primarily focused on its role in the modulation of food intake. As is widely recognised, the regulation of the body's energy status is a highly complex process involving numerous systems, hormones and neurotransmitters. Among the most important regulators of energy status, alongside the satiety and hunger centre located in the hypothalamus, is the HPT axis, which directly and indirectly affects the regulation of metabolism in all cells of the body.
View Article and Find Full Text PDFMol Cell Endocrinol
December 2024
Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Morfológicas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil. Electronic address:
Methylparaben (MP) belongs to the paraben class and is widely used as a preservative in personal care products, medicines, and some foods. MP acts as an endocrine disrupting chemical (EDC) on the hypothalamic-pituitary-thyroid (HPT) axis. However, the effects of MP have not yet been completely elucidated, as published results are scarce and controversial.
View Article and Find Full Text PDFExp Mol Pathol
December 2024
College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750000, China; Key Laboratory of Modernization of Minority Medicine, Ministry of Education, Ningxia Medical University, Yinchuan 750000, China. Electronic address:
Male infertility is most commonly caused by oligozoospermia, and its pathogenesis is still poorly understood at the molecular level. This study used RNA sequencing (RNA-Seq) technology to identify candidate genes and regulatory pathways that regulate semen quality in the hypothalamic, pituitary, and testicular tissues of healthy rats and Adenine-induced oligozoospermia model rats. Semen quality testing and histological analysis of testicular tissues were performed on both groups of rats.
View Article and Find Full Text PDFAquat Toxicol
December 2024
Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, The Inner Mongolia Autonomous Region Hohhot Zhaojun Road No 24, Hohhot 010030, PR China. Electronic address:
Microplastic (MPs) can adsorb co-existing pollutants, and alter their behavior and toxicity. Meanwhile, amide herbicides like acetochlor (ACT) are widely used in agriculture, with potential endocrine-disrupting effects that raise ecological concerns. The aim of this research was to examine the effects of MPs on the reproductive endocrine disruption caused by ACT and the effects of maternal transmission.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!