Optimization of an absolute sensitivity in a glassy matrix during DNP-enhanced multidimensional solid-state NMR experiments.

J Magn Reson

Laboratoire de Chimie Inorganique et Biologique, UMR-E3 (CEA/UJF) and CNRS, Institut Nanosciences et Cryogénie, CEA, 38054 Grenoble, France. Electronic address:

Published: February 2014

Thanks to instrumental and theoretical development, notably the access to high-power and high-frequency microwave sources, high-field dynamic nuclear polarization (DNP) on solid-state NMR currently appears as a promising solution to enhance nuclear magnetization in many different types of systems. In magic-angle-spinning DNP experiments, systems of interest are usually dissolved or suspended in glass-forming matrices doped with polarizing agents and measured at low temperature (down to ∼100K). In this work, we discuss the influence of sample conditions (radical concentration, sample temperature, etc.) on DNP enhancements and various nuclear relaxation times which affect the absolute sensitivity of DNP spectra, especially in multidimensional experiments. Furthermore, DNP-enhanced solid-state NMR experiments performed at 9.4 T are complemented by high-field CW EPR measurements performed at the same magnetic field. Microwave absorption by the DNP glassy matrix is observed even below the glass transition temperature caused by softening of the glass. Shortening of electron relaxation times due to glass softening and its impact in terms of DNP sensitivity is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmr.2013.12.005DOI Listing

Publication Analysis

Top Keywords

solid-state nmr
12
absolute sensitivity
8
glassy matrix
8
nmr experiments
8
relaxation times
8
dnp
6
optimization absolute
4
sensitivity glassy
4
matrix dnp-enhanced
4
dnp-enhanced multidimensional
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!