Mesenchymal stromal cells (MSCs) play an important role in tissue regeneration mainly through the secretion of trophic factors that enhance the repair of damaged tissues. The main goal of this work was to study the paracrine mechanisms by which an umbilical cord tissue-derived MSC population (UCX(®)) promotes the migration capacity of human dermal fibroblasts and keratinocytes, which is highly relevant for skin regeneration. Furthermore, the differences between paracrine activities of MSCs from the umbilical cord tissue and the bone marrow (BM-MSCs) were also evaluated. In vitro scratch assays revealed that conditioned media (CM) obtained from both growing and stationary-phase UCX(®) cultures induced human dermal fibroblast (HDF) and keratinocyte (HaCaT) migration. These assays showed that the motogenic activity of UCX(®) CM to HaCaTs was significantly higher than to HDFs, in opposition to the effect seen with CM produced by BM-MSCs that preferentially induced HDF migration. Accordingly, a comparative quantification of key factors with vital importance in the consecutive stages of wound healing revealed very different secretome profiles between UCX(®) and BM-MSCs. The relatively higher UCX(®) expression of EGF, FGF-2, and KGF strongly supports early induction of keratinocyte migration and function, whereas the UCX(®)-specific expression of G-CSF suggested additional roles in mobilization of healing-related cells including CD34(-)/CD45(-) precursors (MSCs) known to be involved in tissue regeneration. Accordingly, in vitro chemotaxis assays and an in vivo transplantation model for chemoattraction confirmed that UCX(®) are chemotactic to CD34(-)/CD45(-) BM-MSCs via a cell-specific mobilization mechanism mediated by G-CSF. Overall, the results strongly suggest different paracrine activities between MSCs derived from different tissue sources, revealing the potential of UCX(®) to extend the regenerative capacity of the organism by complementing the role of endogenous BM-MSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3727/096368913X676231 | DOI Listing |
Cureus
December 2024
Pediatric Surgery, Combined Military Hospital Lahore, Lahore, PAK.
Umbilical lesions in children represent a wide spectrum of congenital or acquired anomalies. Congenital anomalies are mainly because of failed obliteration of the omphalomesenteric duct while acquired pathologies are either because of delayed umbilical cord separation causing umbilical granuloma or result from umbilical stump infection producing omphalitis with persistent discharge. Meckel's diverticulum is considered the most common gastrointestinal congenital anomaly resulting from obliteration failure of the omphalomesenteric duct while umbilical granuloma is a common acquired umbilical lesion seen in daily practice.
View Article and Find Full Text PDFWorld J Stem Cells
January 2025
Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing 100730, China.
Endometrial injury caused by repeated uterine procedures, infections, inflammation, or uterine artery dysfunction can deplete endometrial stem/progenitor cells and impair regeneration, thereby diminishing endometrial receptivity and evidently lowering the live birth, clinical pregnancy, and embryo implantation rates. Currently, safe and effective clinical treatment methods or gene-targeted therapies are unavailable, especially for severe endometrial injury. Umbilical cord mesenchymal stem cells and their extracellular vesicles are characterized by their simple collection, rapid proliferation, low immunogenicity, and tumorigenicity, along with their involvement in regulating angiogenesis, immune response, cell apoptosis and proliferation, inflammatory response, and fibrosis, Therefore, these cells and vesicles hold broad potential for application in endometrial repair.
View Article and Find Full Text PDFWorld J Cardiol
January 2025
Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Disease, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.
Heart failure (HF) is a complex syndrome characterized by the reduced capacity of the heart to adequately fill or eject blood. Currently, HF remains a leading cause of morbidity and mortality worldwide, imposing a substantial burden on global healthcare systems. Recent advancements have highlighted the therapeutic potential of mesenchymal stromal cells (MSCs) in managing HF.
View Article and Find Full Text PDFInt Med Case Rep J
January 2025
Department of Obstetrics and Gynecology, Universitas Padjadjaran, Bandung, Indonesia.
Vasa previa is a condition where unprotected fetal vessels, neither by placenta nor umbilical cord, lie within the membranes over the internal cervical ostium and beneath the presenting part of the fetus. Due to this condition, the membranous vessels pose a higher risk of being compressed or ruptures and could lead to fetal demise, exsanguination, or even fetal death. In this case report, we reported a case of a 36-year-old woman, G3P2A0, at term gestation and oblique lie.
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, P. R. China.
Background: Asthma is a prevalent respiratory disease, and its management remains largely unsatisfactory. Mesenchymal stem cells (MSCs) have been demonstrated to be efficacious in reducing airway inflammation in experimental allergic diseases, representing a potential alternative treatment for asthma. Migrasomes are recently identified extracellular vesicles (EVs) generated in migrating cells and facilitate intercellular communication.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!