Metallothionein-3 (MT3) is one of the four mammalian metallothioneins (MT), and is constitutively synthesized in the brain. MT3 acts both intracellularly and extracellularly in this organ, performing functions related to neuronal growth and physiological metal (Zn and Cu) handling. It appears to be involved in the prevention of neurodegenerative disorders caused by insoluble Cu-peptide aggregates, as it triggers a Zn-Cu swap that may counteract the deleterious presence of copper in neural tissues. The literature data on MT3 coordination come from studies either on apo-MT3 reconstitution or the reaction of Zn-MT3 with Cu(2+) , an ion that is hardly present inside cells. To ascertain the MT3 metal-binding features in a scenario closer to the reductive cell cytoplasm, a study of the recombinant Zn(2+) , Cd(2+) and Cu(+) complexes of MT3, βMT3, and αMT3, as well as the in vitro Zn(2+) -Cd(2+) and Zn(2+) -Cu(+) replacement processes, is presented here. We conclude that MT3 has a Cu-thionein character that is stronger than that of the MT1 and MT2 isoforms - also present in the mammalian brain - which is mainly contributed by its β domain. In contrast, the α domain retains a high capacity to bind Zn(2+) ions, and, consequently, the entire MT3 peptide shows a peculiar dual ability to handle both metal ions. The nature of the formed Cu(+) -MT3 complexes oscillates from heterometallic Cu6 Zn4 -MT3 to homometallic Cu10 -MT3 major species, in a narrow Cu concentration range. Therefore, the entire MT3 peptide shows a high capacity to bind Cu(+) , provided that this occurs in a nonoxidative milieux. This reflects a peculiar property of this MT isoform, which accurately senses different Cu contents in the environment in which it is synthesized.

Download full-text PDF

Source
http://dx.doi.org/10.1111/febs.12731DOI Listing

Publication Analysis

Top Keywords

mt3
8
high capacity
8
capacity bind
8
entire mt3
8
mt3 peptide
8
vivo-folded metal-metallothionein
4
metal-metallothionein complexes
4
complexes reveal
4
reveal cu-thionein
4
cu-thionein zn-thionein
4

Similar Publications

Characterization of VldE (Spr1875), a Pneumococcal Two-State l,d-Endopeptidase with a Four-Zinc Cluster in the Active Site.

ACS Catal

December 2024

Department of Crystallography and Structural Biology, Consejo Superior de Investigaciones Científicas, Instituto de Química-Física "Blas Cabrera", Madrid 28006, Spain.

Remodeling of the pneumococcal cell wall, carried out by peptidoglycan (PG) hydrolases, is imperative for maintaining bacterial cell shape and ensuring survival, particularly during cell division or stress response. The protein Spr1875 plays a role in stress response, both regulated by the VicRK two-component system (analogous to the WalRK TCS found in Firmicutes). Modular Spr1875 presents a putative cell-wall binding module at the N-terminus and a catalytic C-terminal module (Spr1875) connected by a long linker.

View Article and Find Full Text PDF
Article Synopsis
  • Oxidative stress contributes to various diseases, including neurodegenerative conditions like Alzheimer's, where reactive oxygen species (ROS) disrupt protein function.
  • Metallothionein-3 (MT3), a metalloprotein abundant in the brain, is shown to play a crucial role in managing oxidative stress, especially when it binds with metals like zinc or cadmium.
  • The study presents findings that indicate MT3 oxidizes more rapidly than its kidney counterpart (MT1), with distinct oxidation pathways that suggest a protective role for zinc in its fully metalated form.
View Article and Find Full Text PDF

Background: Preclinical and clinical studies suggest that zinc deficiency and chronic stress contribute to depressive symptoms. Our study explores the intricate relationship between these factors by examining their physiological and biochemical effects across various organs in C57Bl/6J mice.

Methods: The mice were divided into four groups: control, chronic restraint stress for 3 weeks, a zinc-restricted diet (<3 mg/kg) for 4 weeks, and a combination of stress and zinc restriction.

View Article and Find Full Text PDF
Article Synopsis
  • Melatonin shows a therapeutic effect for treating migraines, but how it works at the receptor level was previously unclear.
  • In this study, researchers used rat models and various antagonists to analyze how melatonin affects pain behaviors, CGRP levels, and mast cell activation related to migraine conditions.
  • The findings indicate that melatonin reduces migraine symptoms by modulating CGRP expression and mast cell activation, primarily through the MT2 receptor, while its effects are not reversed by the MT3 antagonist prazosin.
View Article and Find Full Text PDF

mG-modified mt-tRF3b-LeuTAA regulates mitophagy and metabolic reprogramming via SUMOylation of SIRT3 in chondrocytes.

Biomaterials

March 2025

Department of Sports Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China. Electronic address:

N7-methylguanosine (mG) modification is one of the most prevalent RNA modifications, and methyltransferase-like protein-1 (METTL1) is a key component of the mG methyltransferase complex. METTL1-catalyzed mG as a new RNA modification pathway that regulates RNA structure, biogenesis, and cell migration. Increasing evidence indicates that mG modification has been implicated in the pathophysiological process of osteoarthritis (OA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!