The benchmark functions and some of the algorithms proposed for the special session on real parameter optimization of the 2005 IEEE Congress on Evolutionary Computation (CEC'05) have played and still play an important role in the assessment of the state of the art in continuous optimization. In this article, we show that if bound constraints are not enforced for the final reported solutions, state-of-the-art algorithms produce infeasible best candidate solutions for the majority of functions of the IEEE CEC'05 benchmark function suite. This occurs even though the optima of the CEC'05 functions are within the specified bounds. This phenomenon has important implications on algorithm comparisons, and therefore on algorithm designs. This article's goal is to draw the attention of the community to the fact that some authors might have drawn wrong conclusions from experiments using the CEC'05 problems.

Download full-text PDF

Source
http://dx.doi.org/10.1162/EVCO_a_00120DOI Listing

Publication Analysis

Top Keywords

bound constraints
8
ieee cec'05
8
cec'05 benchmark
8
benchmark function
8
function suite
8
cec'05
5
note bound
4
constraints handling
4
handling ieee
4
suite benchmark
4

Similar Publications

Search for light long-lived particles decaying to displaced jets in proton-proton collisions at √s = 13.6 TeV.

Rep Prog Phys

January 2025

European Organization for Nuclear Research, HCP, CH-1211 GENEVE 23, Geneva, 1211 Geneva 23, SWITZERLAND.

A search for light long-lived particles decaying to displaced jets is presented, using a data sample of proton-proton collisions at a center-of-mass energy of 13.6 TeV, corresponding to an integrated luminosity of 34.7 fb$^{-1}$, collected with the CMS detector at the CERN LHC in 2022.

View Article and Find Full Text PDF

Current strategies centred on either merging or linking initial hits from fragment-based drug design (FBDD) crystallographic screens generally do not fully leaverage 3D structural information. We show that an algorithmic approach (Fragmenstein) that 'stitches' the ligand atoms from this structural information together can provide more accurate and reliable predictions for protein-ligand complex conformation than general methods such as pharmacophore-constrained docking. This approach works under the assumption of conserved binding: when a larger molecule is designed containing the initial fragment hit, the common substructure between the two will adopt the same binding mode.

View Article and Find Full Text PDF

Unprecedented penetration of artificial intelligence (AI) algorithms has brought about rapid innovations in electronic hardware, including new memory devices. Nonvolatile memory (NVM) devices offer one such attractive alternative with ∼2× density and data retention after powering off. Compute-in-memory (CIM) architectures further improve energy efficiency by fusing the computation operations with AI model storage.

View Article and Find Full Text PDF

Gene expression is coordinated by a multitude of transcription factors (TFs), whose binding to the genome is directed through multiple interconnected epigenetic signals, including chromatin accessibility and histone modifications. These complex networks have been shown to be disrupted during aging, disease, and cancer. However, profiling these networks across diverse cell types and states has been limited due to the technical constraints of existing methods for mapping DNA:Protein interactions in single cells.

View Article and Find Full Text PDF

Repository for extended dark matter object constraints.

Eur Phys J C Part Fields

January 2025

Institute for Particle Physics Phenomenology, Department of Physics, Durham University, Durham, DH1 3LE UK.

Extended dark matter objects (EDOs) are popular dark matter candidates that interact gravitationally with the Standard Model. These gravitational interactions can be used to constrain their allowed parameter space. However, EDOs can have different formation mechanisms, sizes, and shapes, requiring a case-by-case analysis when studying their impact on different areas of cosmology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!