β₂-adrenergic agonists modulate TNF-α induced astrocytic inflammatory gene expression and brain inflammatory cell populations.

J Neuroinflammation

Department of Neurology, University Hospital Brussels, Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.

Published: January 2014

Background: The NF-κB signaling pathway orchestrates many of the intricate aspects of neuroinflammation. Astrocytic β₂-adrenergic receptors have emerged as potential regulators in central nervous system inflammation and are potential targets for pharmacological modulation. The aim of this study was to elucidate the crosstalk between astrocytic β₂-adrenergic receptors and the TNF-α induced inflammatory gene program.

Methods: Proinflammatory conditions were generated by the administration of TNF-α. Genes that are susceptible to astrocytic crosstalk between β₂-adrenergic receptors (stimulated by clenbuterol) and TNF-α were identified by qPCR-macroarray-based gene expression analysis in a human 1321 N1 astrocytoma cell line. Transcriptional patterns of the identified genes in vitro were validated by RT-PCR on the 1321 N1 cell line as well as on primary rat astrocytes. In vivo expression patterns were examined by intracerebroventricular administration of clenbuterol and/or TNF-α in rats. To examine the impact on the inflammatory cell content of the brain we performed extensive FACS analysis of rat brain immune cells after intracerebroventricular clenbuterol and/or TNF-α administration.

Results: Parallel transcriptional patterns in vivo and in vitro confirmed the relevance of astrocytic β₂-adrenergic receptors as modulators of brain inflammatory responses. Importantly, we observed pronounced effects of β2-adrenergic receptor agonists and TNF-α on IL-6, CXCL2, CXCL3, VCAM1, and ICAM1 expression, suggesting a role in inflammatory brain cell homeostasis. Extensive FACS-analysis of inflammatory cell content in the brain demonstrated that clenbuterol/TNF-α co-administration skewed the T cell population towards a double negative phenotype and induced a shift in the myeloid brain cell population towards a neutrophilic predominance.

Conclusions: Our results show that astrocytic β₂-adrenergic receptors are potent regulators of astrocytic TNF-α-activated genes in vitro and in vivo, and ultimately modulate the molecular network involved in the homeostasis of inflammatory cells in the central nervous system. Astrocytic β₂-adrenergic receptors and their downstream signaling pathway may serve as potential targets to modulate neuroinflammatory responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3942172PMC
http://dx.doi.org/10.1186/1742-2094-11-21DOI Listing

Publication Analysis

Top Keywords

β₂-adrenergic receptors
24
astrocytic β₂-adrenergic
20
inflammatory cell
12
tnf-α induced
8
astrocytic
8
inflammatory
8
inflammatory gene
8
gene expression
8
brain inflammatory
8
cell
8

Similar Publications

Purpose: Orvacabtagene autoleucel (orva-cel; JCARH125), a CAR T-cell therapy targeting B-cell maturation antigen (BCMA), was evaluated in relapsed/refractory multiple myeloma (RRMM) patients in the EVOLVE phase 1/2 study (NCT03430011). We applied a modified piecewise model to characterize orva-cel transgene kinetics and assessed the impact of various covariates on its pharmacokinetics (PK).

Experimental Design: The population PK analysis included 159 patients from the EVOLVE study.

View Article and Find Full Text PDF

Factors Associated With Semaglutide Initiation Among Adults With Obesity.

JAMA Netw Open

January 2025

Department of Global Health, School of Public Health, Boston University, Boston, Massachusetts.

Importance: Semaglutide, a novel glucagon-like peptide-1 (GLP-1) receptor agonist medication, was approved for weight management in individuals with obesity in June 2021. There is limited evidence on factors associated with uptake among individuals in this subgroup without diabetes.

Objective: To explore factors associated with semaglutide initiation among a population of commercially insured individuals with obesity but no diagnosed diabetes.

View Article and Find Full Text PDF

Pyrimidinergic P2Y1-Like Nucleotide Receptors Are Functional in Rat Conjunctival Goblet Cells.

Invest Ophthalmol Vis Sci

January 2025

Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States.

Purpose: To investigate the presence of uridine-5'-triphosphate (UTP)-activated P2Y1-like nucleotide receptors (P2Y2R, P2Y4R, and P2Y6R) in conjunctival goblet cells (CGCs) and determine if they increase intracellular Ca2+ concentration ([Ca2+]i) and induce mucin secretion.

Methods: Adult, male rat conjunctiva was used for culture of CGCs. To investigate the expression of P2YRs, mRNA was extracted from CGCs and used for reverse transcription PCR (RT-PCR) with commercially obtained primers specific to P2Y2R, P2Y4R, and P2Y6R.

View Article and Find Full Text PDF

Purpose Of Review: This paper reviewed the current literature on incidence, clinical manifestations, and risk factors of Chimeric Antigen Receptor T-cell (CAR-T) cardiotoxicity.

Recent Findings: CAR-T therapy has emerged as a groundbreaking treatment for hematological malignancies since FDA approval in 2017. CAR-T therapy is however associated with a few side effects, among which cardiotoxicity is of significant concern.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!