Purpose: This study tested the materials available on the market for Cerec CAD/CAM, comparing the mean flexural strength in an ISO standardized set-up, since the ISO standard for testing such materials was issued later than the marketing of the materials tested.
Methods: Following the recent Standard ISO 6872:2008, eight types of ceramic blocks were tested: Paradigm C, IPS Empress CAD LT, IPS Empress CAD Multi, Cerec Blocs, Cerec Blocs PC, Triluxe, Triluxe Forte, Mark II. Specimens were cut out from ceramic blocks, finished, polished, and tested in a three-point bending test apparatus until failure. Flexural strength, Weibull characteristic strength, and Weibull modulus, were calculated.
Results: The results obtained from the materials for flexural strength were IPS Empress CAD (125.10 +/- 13.05), Cerec Blocs (112.68 +/- 7.97), Paradigm C (109.14 +/- 10.10), Cerec Blocs PC (105.40 +/- 5.39), Triluxe Forte (105.06 +/- 4.93), Mark II (102.77 +/- 3.60), Triluxe (101.95 +/- 7.28) and IPS Empress CAD Multi (100.86 +/- 15.82). All the tested materials had a flexural strength greater than 100 MPa, thereby satisfying the requirements of the ISO standard for the clinical indications of the materials tested. In all tested materials the Weibull characteristic strength was greater than 100 MPa.
Download full-text PDF |
Source |
---|
Research (Wash D C)
December 2024
School of Materials Science and Engineering, Jiangsu Key Laboratory of Construction Materials, Southeast University, Nanjing, China.
Concrete is the most widely used and highest-volume basic material in the word today. Enhancing its toughness, including tensile strength and deformation resistance, can boost the structural load-bearing capacity, minimize cracking, and decrease the amount of concrete and steel required in engineering projects. These advancements are crucial for the safety, durability, energy efficiency, and emission reduction of structural engineering.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh.
This study investigated a composite material combining epoxy with hybrid jute (J) and glass (G) fibers. A straightforward and effective fabrication method was employed, utilizing five layers with various reinforcement materials. To identify the optimal combination, a comprehensive series of tests were conducted using a range of characterization instruments, including Scanning Electron Microscopy (SEM), Universal Testing Machine (UTM), pendulum impact tester, density measurement, specific gravity evaluation, water absorption, and swelling thickness tests.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Chemistry and Bioscience, Aalborg University, Aalborg, DK-9220, Denmark.
β-CaSiO based glass-ceramics are among the most reliable materials for electronic packaging. However, developing a CaSiO glass-ceramic substrate with both high strength (>230 MPa) and low dielectric constant (<5) remains challenging due to its polycrystalline nature. The present work has succeeded in synthesizing single-crystalline β-CaSiO for a high-performance glass-ceramic substrate.
View Article and Find Full Text PDFJ Esthet Restor Dent
December 2024
Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea.
Objectives: To evaluate the complementary mechanical properties of dental ceramics using edge chipping resistance (Rea) and flexural strength before and after thermomechanical aging.
Material And Methods: Computer-aided design and computer-aided manufacturing of ceramic materials, including zirconia (ZR), lithium disilicate (LS2), and resin nanoceramics (RNC), were evaluated. Specimens for flexural strength testing were fabricated with dimensions of 3 × 4 × 25 mm, with 30 specimens per group.
J Dent
December 2024
Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Universidade Federal do Rio de Janeiro (UFRJ). Rodolpho Paulo Rocco, 325, Rio de Janeiro, RJ, Brazil. ZIP Code: 21941-617. Electronic address:
Objectives: To identify and map the literature on the current state of pH-triggered strategies for resin-based materials used in direct restorative dentistry, focusing on innovative compounds, their incorporation and evaluation methods, and the main outcomes.
Data And Sources: Through a search across PubMed, Scopus, Embase, Web of Science, LILACS, Cochrane Library databases, and Google Scholar, this review identified studies pertinent to pH-responsive dental materials, excluding resin-modified glass ionomer cements.
Study Selection: From the 981 records identified, 19 in vitro studies were included, concentrating on resin-based composite resins (50%), dentin adhesives (25%), and sealants (25%).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!