Role of AE2 for pHi regulation in biliary epithelial cells.

Front Physiol

Division of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), School of Medicine, University of Navarra, and Ciberehd Pamplona, Spain.

Published: June 2014

The Cl(-)/HCO(-) 3anion exchanger 2 (AE2) is known to be involved in intracellular pH (pHi) regulation and transepithelial acid-base transport. Early studies showed that AE2 gene expression is reduced in liver biopsies and blood mononuclear cells from patients with primary biliary cirrhosis (PBC), a disease characterized by chronic non-suppurative cholangitis associated with antimitochondrial antibodies (AMA) and other autoimmune phenomena. Microfluorimetric analysis of the Cl(-)/HCO(-) 3 anion exchange (AE) in isolated cholangiocytes showed that the cAMP-stimulated AE activity is diminished in PBC compared to both healthy and diseased controls. More recently, it was found that miR-506 is upregulated in cholangiocytes of PBC patients and that AE2 may be a target of miR-506. Additional evidence for a pathogenic role of AE2 dysregulation in PBC was obtained with Ae2 (-/-) a,b mice, which develop biochemical, histological, and immunologic alterations that resemble PBC (including development of serum AMA). Analysis of HCO(-) 3 transport systems and pHi regulation in cholangiocytes from normal and Ae2 (-/-) a,b mice confirmed that AE2 is the transporter responsible for the Cl(-)/HCO(-) 3exchange in these cells. On the other hand, both Ae2 (+/+) a,b and Ae2 (-/-) a,b mouse cholangiocytes exhibited a Cl(-)-independent bicarbonate transport system, essentially a Na(+)-bicarbonate cotransport (NBC) system, which could contribute to pHi regulation in the absence of AE2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894451PMC
http://dx.doi.org/10.3389/fphys.2013.00413DOI Listing

Publication Analysis

Top Keywords

phi regulation
16
ae2 -/-
12
ae2
10
role ae2
8
-/- mice
8
pbc
5
phi
4
ae2 phi
4
regulation
4
regulation biliary
4

Similar Publications

Oxidative stress is a major threat to plant growth and survival. To understand how plants cope with oxidative stress, we carried out a genetic screen for Arabidopsis (Arabidopsis thaliana) mutants with altered response to hydrogen peroxide (H2O2) in root growth. Herein, we report the characterization of one of the hypersensitive mutants obtained.

View Article and Find Full Text PDF

From one size fits all to a tailored approach: integrating precision medicine into medical education.

BMC Med Educ

January 2025

Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, P.O. Box 330127, Zarqa, 13133, Jordan.

Background: As precision medicine gains momentum, the traditional - One Size Fits All - approach to disease prevention and treatment is becoming less reliable. Medical education must prioritize equipping physicians with the knowledge to apply precision medicine effectively. The present study aimed to investigate the knowledge, attitudes, and perceived barriers to precision medicine among medical students, interns, and physicians in Jordan.

View Article and Find Full Text PDF

The WRKY70 transcription factor (TF) was reported to play an important role in the salt stress response mechanism of in our previous research, and we also produced several overexpression (OEXs) and RNAi suppression (REXs) × lines. In order to further compare the photosynthetic and physiological characteristics of NT (non-transgenic line) and transgenic lines under salt stress, the dynamic phenotypic change, Na and K content in leaf and root tissues, superoxide dismutase (SOD) and peroxidase (POD) activity, malondialdehyde (MDA) content, chlorophyll content (Chl), photosynthesis parameters (net photosynthetic rate, P; stomatal conductance, Gs; intercellular CO concentration, C; transpiration rate, T), chlorophyll fluorescence parameters (electron transport rate, ETR; maximum photochemical efficiency of photosystem II (PSII), F/F; actual efficiency of PSII, Φ; photochemical quenching coefficient, q; non-photochemical quenching, NPQ; the photosynthetic light-response curves of Φ and ETR) and RNA-seq of NT, OEX and REX lines were detected and analyzed. The phenotypic observation, MDA content and Chl detection results indicate that the stress damage of REXs was less severe than that of NT and OEX lines under salt stress.

View Article and Find Full Text PDF

Background Rapid treatment of ST-elevation myocardial infarction (STEMI) patients with primary percutaneous coronary intervention (PCI) significantly reduces morbidity and mortality rates. Recent studies emphasize the importance of reducing total ischemic time, making first-medical-contact-to-balloon (FMCTB) time a key performance indicator. To improve FMCTB times in patients brought to the Emergency Department (ED) by Emergency Medical Services (EMS), we implemented a "Direct to Lab" (DTL) workflow during the following conditions: weekday daytime hours, when the lab is fully staffed, and for hemodynamically stable STEMI patients presenting via EMS.

View Article and Find Full Text PDF

A chiral agent, TPE-ASP, incorporating aspartic acid as the chiral source and tetraphenylene derivatives as chromophores, was designed and synthesized. The chiral agent was self-assembled into regular spherical nanoparticles with a maximum luminescence asymmetry factor of |2.41 × 10| at 460 nm which is attributed to TPE-ASP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!