Background: Early drug intervention in childhood disorders aims to maximize individual potential in the short- and long-term. Consistently, juvenile exposure to psychostimulants, such as methylphenidate (MPH), reduces risk for substance use in animals and sub-populations of individuals with attention deficit hyperactivity disorder (ADHD). We investigated the effects of MPH on brain plasticity via dopamine receptor D3 (D3R) and brain-derived neurotrophic factor (BDNF) expression in developing rats.
Methods: Between postnatal days 20-35, rat pups were administered saline vehicle (Veh) or MPH (2 mg/kg), the D3R-preferring agonist ±7-OHDPAT, or the antagonist nafadotride (0.05 mg/kg) alone, or in combination with MPH twice a day. In adulthood, subjects were challenged to Veh or cocaine (10 mg/kg for two days). The prefrontal cortex was analyzed for protein and mRNA levels of total BDNF, its splice variants I, IIc, III/IV, and IV/VI, and D3 receptors. A separate group of subjects was assessed for splice variants at 20, 35, 40, and 60 days of age.
Results: Across age strong correlations were evident between Drd3 and Bdnf mRNA levels (r = 0.65) and a negative relationship between Drd3 and exon IIc after MPH treatment (r = -0.73). BDNF protein levels did not differ between Veh- and MPH subjects at baseline, but were significantly lower in MPH-treated and cocaine challenged subjects (30.3 ± 9.7%). Bdnf mRNA was significantly higher in MPH-treated subjects, and reversed upon exposure to cocaine. This effect was blocked by nafadotride. Furthermore, Bdnf total and Bdnf splice variants I, IIc, III/IV, and IV/VI changed across the transitions between juvenility and late adolescence.
Conclusions: These data suggest a sensitive window of vulnerability to modulation of BDNF expression around adolescence, and that compared to normal animals, juvenile exposure to MPH permanently reduces prefrontal BDNF transcription and translation upon cocaine exposure in adulthood by a D3R-mediated mechanism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896878 | PMC |
http://dx.doi.org/10.3389/fnsyn.2014.00001 | DOI Listing |
EBioMedicine
December 2024
Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Nanhu Brain-Computer Interface Institute, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory of Precision Psychiatry, Hangzhou, 310003, China; Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, China; Brain Research Institute of Zhejiang University, Hangzhou, 310058, China; MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, 310058, China; Department of Psychology and Behavioral Sciences, Graduate School, Zhejiang University, Hangzhou, 310058, China. Electronic address:
Background: Increasing evidence suggests a complex interplay between psychiatric disorders and metabolic dysregulations. However, most research has been limited to specific disorder pairs, leaving a significant gap in our understanding of the broader psycho-metabolic nexus.
Methods: This study leveraged large-scale cohort data and genome-wide association study (GWAS) summary statistics, covering 8 common psychiatric disorders and 43 metabolic traits.
BMC Pediatr
December 2024
Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, China.
The ARCN1 gene encodes the delta subunit of the coatomer protein complex I (COPI), which is essential for mediating protein transport from the Golgi complex to the endoplasmic reticulum. Variants in ARCN1 are associated with clinical features such as microcephaly, microretrognathia, intrauterine growth restriction, short rhizomelic stature, and developmental delays. We present a case of a patient exhibiting intrauterine growth restriction, preterm birth, microcephaly, micrognathia, and central precocious puberty.
View Article and Find Full Text PDFCancer Genomics Proteomics
December 2024
Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway;
Background/aim: Myelodysplastic syndromes (MDSs) are clonal bone marrow disorders characterized by ineffective hematopoiesis. They are classified based on morphology and genetic alterations, with SF3B1 variants linked to favorable prognosis and MECOM rearrangements associated with poor outcomes. The combined effects of these alterations remain unclear.
View Article and Find Full Text PDFCurr Biol
December 2024
The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA. Electronic address:
Serine 31 is a phospho-site unique to the histone H3.3 variant; mitotic phospho-Ser31 is restricted to pericentromeric heterochromatin, and disruption of phospho-Ser31 results in chromosome segregation defects and loss of p53-dependant G cell-cycle arrest. Ser31 is proximal to the H3.
View Article and Find Full Text PDFCerebellum
December 2024
Department of Neurology, Ramaiah Medical College and Hospitals, Ramaiah University of Applied Sciences, Bengaluru, India.
Spinocerebellar ataxias (SCAs) are a diverse and heterogeneous group of inherited neurodegenerative disorders marked by progressive ataxia and cerebellar degeneration. This case report details an 11-year-old Indian boy with childhood-onset ataxia and severe sensorineural hearing loss, a rarely reported concomitance in pediatric neurology. Genetic analysis identified a unique heterozygous 3' splice site variant in the PNPT1 gene (c.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!