Early detection of Mycobacterium tuberculosis complex (MTBC) and markers conveying drug resistance can have a beneficial impact on preventive public health actions. We describe here a new molecular point-of-care (POC) system, the Genedrive, which is based on simple sample preparation combined with PCR to detect MTBC and simultaneously detect mutation markers in the rpoB gene directly from raw sputum sample. Hybridization probes were used to detect the presence of the key mutations in codons 516, 526, and 531 of the rpoB gene. The sensitivities for MTBC and rpoB detection from sputum samples were assessed using model samples spiked with known numbers of bacteria prepared from liquid cultures of M. tuberculosis. The overall sensitivities were 90.8% (95% confidence interval [CI], 81, 96.5) for MTBC detection and 72.3% (95% CI, 59.8, 82.7) for rpoB detection. For samples containing ≥1,000 CFU/ml, the sensitivities were 100% for MTBC and 85.7% for rpoB detection, while for samples containing ≤100 CFU/ml, the sensitivities were 86.4% and 65.9% for MTBC and rpoB detection, respectively. The specificity was shown to be 100% (95% CI, 83.2, 100) for MTBC and rpoB. The clinical sputum samples were processed using the same protocol and showed good concordance with the data generated from the model. Tuberculosis-infected subjects with smear samples assessed as scanty or negative were detectable by the Genedrive system. In these paucibacillary patients, the performance of the Genedrive system was comparable to that of the GeneXpert assay. The characteristics of the Genedrive platform make it particularly useful for detecting MTBC and rifampin resistance in low-resource settings and for reducing the burden of tuberculosis disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3911309 | PMC |
http://dx.doi.org/10.1128/JCM.02209-13 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!