Hypothalamic nesfatin-1/NUCB2 knockdown augments hepatic gluconeogenesis that is correlated with inhibition of mTOR-STAT3 signaling pathway in rats.

Diabetes

Department of Endocrinology, Second Affiliated Hospital, and Key Laboratory of Laboratory Medical Diagnostics (Ministry of Education), Chongqing Medical University, Chongqing, China.

Published: April 2014

Nesfatin-1, an 82-amino acid neuropeptide, has recently been characterized as a potent metabolic regulator. However, the metabolic mechanisms and signaling steps directly associated with the action of nesfatin-1 have not been well delineated. We established a loss-of-function model of hypothalamic nesfatin-1/NUCB2 signaling in rats through an adenoviral-mediated RNA interference. With this model, we found that inhibition of central nesfatin-1/NUCB2 activity markedly increased food intake and hepatic glucose flux and decreased glucose uptake in peripheral tissue in rats fed either a normal chow diet (NCD) or a high-fat diet (HFD). The change of hepatic glucose fluxes in the hypothalamic nesfatin-1/NUCB2 knockdown rats was accompanied by increased hepatic levels of glucose-6-phosphatase and PEPCK and decreased insulin receptor, insulin receptor substrate 1, and AKT kinase phosphorylation. Furthermore, knockdown of hypothalamic nesfatin-1 led to decreased phosphorylation of mammalian target of rapamycin (mTOR) and signal transducer and activator of transcription 3 (STAT3) and the subsequent suppressor of cytokine signaling 3 levels. These results demonstrate that hypothalamic nesfatin-1/NUCB2 plays an important role in glucose homeostasis and hepatic insulin sensitivity, which is, at least in part, associated with the activation of the mTOR-STAT3 signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.2337/db13-0899DOI Listing

Publication Analysis

Top Keywords

hypothalamic nesfatin-1/nucb2
16
nesfatin-1/nucb2 knockdown
8
mtor-stat3 signaling
8
signaling pathway
8
hepatic glucose
8
insulin receptor
8
hypothalamic
5
hepatic
5
signaling
5
knockdown augments
4

Similar Publications

Xenin is a 25-amino acid peptide identified in human gastric mucosa, which is widely expressed in peripheral and central tissues. It is known that the central or peripheral administration of xenin decreases food intake in rodents. Nesfatin-1/NUCB2 (nesfatin-1) has been identified as an anorexic neuropeptide, it is often found co-localized with many peptides in the central nervous system.

View Article and Find Full Text PDF

We examined whether the chemogenetic activation of endogenous arginine vasopressin (AVP) affects central nesfatin-1/NucB2 neurons, using a transgenic rat line that was previously generated. Saline (1 mL/kg) or clozapine-N-oxide (CNO, 1 mg/mL/kg), an agonist for hM3Dq, was subcutaneously administered in adult male AVP-hM3Dq-mCherry transgenic rats (300-370 g). Food and water intake were significantly suppressed after subcutaneous (s.

View Article and Find Full Text PDF

Colocalized neurotransmitters in the hindbrain cooperate in adaptation to chronic hypernatremia.

Brain Struct Funct

April 2020

Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary.

Chronic hypernatremia activates the central osmoregulatory mechanisms and inhibits the function of the hypothalamic-pituitary-adrenal (HPA) axis. Noradrenaline (NE) release into the periventricular anteroventral third ventricle region (AV3V), the supraoptic (SON) and hypothalamic paraventricular nuclei (PVN) from efferents of the caudal ventrolateral (cVLM) and dorsomedial (cDMM) medulla has been shown to be essential for the hypernatremia-evoked responses and for the HPA response to acute restraint. Notably, the medullary NE cell groups highly coexpress prolactin-releasing peptide (PrRP) and nesfatin-1/NUCB2 (nesfatin), therefore, we assumed they contributed to the reactions to chronic hypernatremia.

View Article and Find Full Text PDF

Cisplatin, known as an anticancer drug, has been widely used; however, diverse disadvantageous side effects, including appetite loss, afflict patients. Nesfatin-1/NucB2, discovered as an anorexic neuropeptide, is broadly expressed in the central nervous system (CNS) and peripheral organ. In the present study, we examined the effects of intraperitoneally (i.

View Article and Find Full Text PDF

Nesfatin-1/NUCB2 is known to take part in the control of the appetite and energy metabolism. Recently, many reports have shown nesfatin-1/NUCB2 expression and function in various organs. We previously demonstrated that nesfatin-1/NUCB2 expression level is higher in the pituitary gland compared to other organs and its expression is regulated by 17β-estradiol and progesterone secreted from the ovary.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!