Recent articles have reported an association between fatty liver disease and systemic insulin resistance in humans, but the causal relationship remains unclear. The liver may contribute to muscle insulin resistance by releasing secretory proteins called hepatokines. Here we demonstrate that leukocyte cell-derived chemotaxin 2 (LECT2), an energy-sensing hepatokine, is a link between obesity and skeletal muscle insulin resistance. Circulating LECT2 positively correlated with the severity of both obesity and insulin resistance in humans. LECT2 expression was negatively regulated by starvation-sensing kinase adenosine monophosphate-activated protein kinase in H4IIEC hepatocytes. Genetic deletion of LECT2 in mice increased insulin sensitivity in the skeletal muscle. Treatment with recombinant LECT2 protein impaired insulin signaling via phosphorylation of Jun NH2-terminal kinase in C2C12 myocytes. These results demonstrate the involvement of LECT2 in glucose metabolism and suggest that LECT2 may be a therapeutic target for obesity-associated insulin resistance.

Download full-text PDF

Source
http://dx.doi.org/10.2337/db13-0728DOI Listing

Publication Analysis

Top Keywords

insulin resistance
24
skeletal muscle
12
muscle insulin
12
lect2
8
obesity skeletal
8
insulin
8
resistance humans
8
resistance
6
lect2 functions
4
functions hepatokine
4

Similar Publications

Background: The Triglyceride-glucose (TyG) index is a marker for insulin resistance and metabolic syndrome, while Helicobacter pylori is linked to gastrointestinal diseases and may affect metabolic risks. This study examined the association between the TyG index and H. pylori infection in adults.

View Article and Find Full Text PDF

Background: Obesity is a chronic disease associated with other associated medical problems, including atherogenic dyslipidemia. Metabolic bariatric surgery (MBS) has been shown to reduce long-term cardiovascular risk (CVR). Anti-ApoA-1 antibodies (AAA1) are independently associated with cardiovascular disease, which remains a major cause of death in individuals with obesity.

View Article and Find Full Text PDF

Background: Biological sex influences Alzheimer's disease (AD) development, particularly concerning brain insulin resistance (bIR) and early energy metabolism defects. Biliverdin reductase-A (BVR-A) plays a crucial role in insulin signaling, and its downregulation leads to bIR. However, the sex-related differences in AD neuropathology and underlying mechanisms remain unclear.

View Article and Find Full Text PDF

Background: Diabetes is a modifiable risk factor for Alzheimer's disease, and GLUT4, an insulin-dependent transporter, plays a crucial role in insulin-resistant conditions and, consequently, in diabetes development. The study aimed to investigate the relationship between tau pathology and insulin resistance by quantifying GLUT4 expression and glucose concentration.

Method: Initially, SH-SY5Y cells underwent transfection with either a wild-type tau plasmid or a mutant tau plasmid.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio De Janeiro, Rio de Janeiro, Brazil.

Background: Age-related decrease glucose utilization, coupled with insulin resistance, are key features of AD, resulting in reduced glucose utilization/catabolism and oxidative stress generation. Irisin, an exercise-induced hormone promoting mitochondrial biogenesis in adipocytes via PGC-1α, stimulates thermogenic pathways, increases energy expenditure and induces browning of adipose tissue. Further, irisin expression was shown to trigger neuroprotection in AD models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!