Adult hippocampal neurogenesis, the birth of new neurons in the dentate gyrus of the adult brain, can be regulated by stress and antidepressant treatment, and has consistently been implicated in the behavioral neurobiology of stress-related disorders, especially depression and anxiety. A reciprocal relationship between hippocampal neurogenesis and the hypothalamus-pituitary-adrenal (HPA) axis has recently been suggested, which may play a crucial role in the development and in the resolution of depressive symptoms. This chapter will review some of the existing evidence for stress- and antidepressant-induced changes in adult hippocampal neurogenesis, and critically evaluate the behavioral effects of these changes for depression and anxiety. The potential role of neurogenesis as a neurobiological mechanism for sustained remission from depressive symptoms will be discussed, integrating existing data from clinical studies, animal work, and cellular models. The effect of glucocorticoid hormones and the glucocorticoid receptor (GR) will thereby be evaluated as a central mechanism by which stress and antidepressant may exert their opposing effects on neurogenesis, and ultimately, on mood and behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/7854_2014_275 | DOI Listing |
J Ethnopharmacol
March 2025
Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, School of Chinese medicine, Guangzhou, 510632, China; f GHM Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral Homeostasis and Comprehensive Health, Jinan University, School of Chinese medicine, Guangzhou, 510632, China; Zhuhai Institute of Jinan University, Zhuhai, 519070, China. Electronic address:
Ethnopharmacological Relevancy: Lancao decoction (LC) is a traditional Chinese medicine (TCM) formulation mentioned in the "Huangdineijing", known for its ability to dispel turbidity and eliminate heat. TCM believes that the etiology of Alzheimer's disease (AD) is phlegm turbidity, and the fiery internal obstruction of the gods, which suggests that LC has the possibility of treating.
Aim Of The Study: This investigation will examine the possibilities of LC to improve AD and uncover the underlying mechanisms.
eNeuro
March 2025
Michael Smith Laboratories, University of British Columbia. 2185 East Mall. Vancouver, B.C., V6T 1Z4, Canada.
T-type calcium channels shape neuronal excitability driving burst firing, plasticity and neuronal oscillations that influence circuit activity. The three biophysically distinct T-type channel subtypes (Cav3.1, Cav3.
View Article and Find Full Text PDFMethods Mol Biol
March 2025
The Neurogenesis, Neuroinflammation and Network Dynamics Lab (3ND), Achucarro Basque Center for Neuroscience, Leioa, Spain.
Cultured organotypic hippocampal slices (hOTCs) have become increasingly popular as a model for studying brain function. This model offers significant advantages over traditional in vitro methods, as they allow the examination of mid to long-term manipulations while preserving the structure of the dentate gyrus (DG) in the hippocampus. In this chapter, we focus on a protocol based on hOTCs of mouse entorhinal cortex and hippocampus, which by integrating techniques such as retroviral injections, immunohistochemistry, and microscopy imaging, physiological or pathological processes can be easily investigated.
View Article and Find Full Text PDFMethods Mol Biol
March 2025
Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid, Spain.
Whole-cell patch clamp allows the evaluation of neuronal excitability and characterization of synaptic transmission. With this technique, it is possible to characterize the neuron maturation level and its integration into the hippocampal circuit. This facilitates the identification of the different stages of neural progenitor cells in the adult brain and their contribution to hippocampal function.
View Article and Find Full Text PDFMethods Mol Biol
March 2025
Univ Lyon, Université Claude Bernard Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, Bron, France.
Lineage reprogramming of glial cells into induced neurons (iNs) has emerged as an innovative strategy to replace neurons lost due to injury or neurological diseases. Here, we describe a step-by-step protocol to induce in vivo conversion of reactive glial cells, proliferating within the injured hippocampus, into mature and functional GABAergic iNs through retrovirus-mediated expression of two neurogenic fate determinants (Ascl1 and Dlx2). We have previously applied this method to study the integration and functional impact of GABAergic iNs in epileptic mice (Lentini et al.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!