A structural investigation of sub-15 nm xEu:BaTiO3 nanocrystals (x = 0-5 mol%) was conducted to determine the distribution of the Eu(3+) ion in the BaTiO3 lattice. Pair distribution function analysis of X-ray total scattering data (PDF), steady-state photoluminescence, and X-ray absorption spectroscopy (XANES/EXAFS) were employed to interrogate the crystal structure of the nanocrystals and the local atomic environment of the Eu(3+) ion. The solubility limit of the Eu(3+) ion in the nanocrystalline BaTiO3 host synthesized via the vapor diffusion sol-gel method was estimated to be ∼4 mol%. A contraction of the perovskite unit cell volume was observed upon incorporation of 1 mol% of europium, while an expansion was observed for nominal concentrations between 1 and 3 mol%. The average Eu-O distance and europium coordination number decreased from 2.46 Å and 9.9 to 2.42 Å and 8.6 for europium concentrations of 1 and 5 mol%, respectively. Structural trends were found to be consistent with the substitution of Eu(3+) for Ba(2+)via creation of a Ti(4+) vacancy at low europium concentrations (<1 mol%), and with the substitution of Eu(3+) for both Ba(2+) and Ti(4+) at high europium concentrations (1-3 mol%). The significance of accounting for local structural distortions to rationalize the distribution of lanthanide ions in the perovskite host is highlighted.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3nr06610jDOI Listing

Publication Analysis

Top Keywords

eu3+ ion
12
structural investigation
8
concentrations mol%
8
europium concentrations
8
mol%
5
local structural
4
investigation eu3+-doped
4
eu3+-doped batio3
4
batio3 nanocrystals
4
nanocrystals structural
4

Similar Publications

A sensitized dual-response ratiometric fluorescent sensor integrated smartphone platform for accurate discrimination and detection of tetracycline homologues based on N-CDs‒Eu complex.

Mikrochim Acta

January 2025

Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.

A sensitized dual-response ratiometric fluorescent sensor integrated smartphone platform for accurate discrimination and detection of tetracycline (TC) homologues was fabricated based on N-CDs-Eu complex. In the sensing system, N-CDs act as a sensitizer of Eu and significantly enhance the fluorescence of TC-Eu complex approximate 40-fold owing to the synergistic effect of antenna effect (AE) and fluorescence resonance energy transfer (FRET). A paper sensor integrated with a smartphone platform is further fabricated for on-site measurement of TC.

View Article and Find Full Text PDF

The preparation of new phosphor with outstanding luminescent properties for white light-emitting diodes (WLEDs) is consistently a challenging. Here in the present study, A novel white-emitting chloropatite phosphor Ca(PO)Cl:Eu was synthesized via the pechini sol gel synthesis with citric acid and polyethylene glycol (PEG) acid as a fuel at 850 °C systematically investigating the impact of doping concentration and synthesis temperature on both photoluminescence properties and crystal phase. The structural characteristics and crystalline nature of the prepared sample were investigated by using X-ray diffraction (XRD) patterns and Fourier transform infrared (FT-IR) spectra.

View Article and Find Full Text PDF

A fluorescence "turn-off-on" nanoprobe is designed by using europium-doped strontium molybdate perovskite quantum dots (Eu:SMO PQDs) for the sequential detection of hypoxanthine (Hx) and Fe. The Eu:SMO PQDs were prepared by the sol-gel method using Sr(NO), (NH)MoO.4HO, and Eu(OCOCH) as precursors.

View Article and Find Full Text PDF

Using the solid-state reaction technique, varied YSiO phosphors activated by europium (Eu) ions at varied concentrations were made at calcination temperatures of 1000 °C and 1250 °C during sintering in an air environment. The XRD technique identified the monoclinic structure, and the FTIR technique was used to analyze the generated phosphors. Photoluminescence emission and excitation patterns were measured using varying concentrations of Eu ions.

View Article and Find Full Text PDF

Synergetic Contributions of High Quenching Concentration and Tuned Square Antiprism Geometry Boosting Far-Red Emission of Eu with Near-Unit Efficiency.

Adv Sci (Weinh)

January 2025

Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, China.

Far-red phosphors have emerged as a desirable research hotspot owing to their critical role in promoting plant growth. Especially, Eu ions typically present the D→F (J = 0, 1, 2, 3, 4) transitions, which overlap with the far-red light required for plant photosynthesis. However, achieving high-efficiency far-red emission of Eu remains challenging due to weak D→F transition and concentration quenching.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!