Graphene oxide based molecular switching of ellipticine (E) has been utilized to probe its efficient loading onto graphene oxide (GO) and subsequent release to intra-cellular biomolecules like DNA/RNA. The green fluorescence of E switches to blue in GO and switches back to green with polynucleotides. The intensified blue emission of the ellipticine-GO (E-GO) complex with human serum albumin (HSA), switches to a bluish green upon addition of dsDNA. Electron microscopy reveals the formation of distinctive 3D assemblies involving GO and biomolecule(s) probably through non-covalent interactions and this is primarily responsible for the biomolcule(s) assisted fluorescence-switching of E. To our knowledge, such morphological patterning of a GO-DNA complex is very unusual, reported here the first time and could find applications in the fabrication of biomedical devices. Moreover, our approach of direct optical detection of drug loading and releasing is very cheap, appealing and will be useful for clinical trial experiments once the cytotoxicity of GO is duly taken care.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3nr06081k | DOI Listing |
Environ Sci Technol
January 2025
Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States.
In this work, we analyzed the effects of mineral scaling on the performance of a 3D interfacial solar evaporator, with a focus on the cations relevant to lithium recovery from brackish water. The field has been rapidly moving toward resource recovery applications from brines with higher cation concentrations. However, the potential complications caused by common minerals in these brines other than NaCl have been largely overlooked.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, CAEA Innovation Center of Nuclear Environmental Safety Technology, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
With the development of the nuclear industry, the direct discharge of uranium-containing wastewater has become increasingly harmful to the environment. A novel graphene oxide-supported and phosphoric-crosslinked chitosan gel bead (C-PGCB) with excellent uranium uptake capability was successfully fabricated to treat uranium-containing wastewater. The experimental results showed that the introduction of PO and CO bonds through phosphoric acid crosslinking could greatly improve the capturing ability of chitosan-based materials, which could reach 97.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Georgia Southern Univ, Dept Chem & Biochem, POB 8064, Statesboro, GA 30460, USA.
Great attentions have been paid to anticorrosion coatings with self-healing performances to enhance its reliability and protection period, but massive challenges still remain for developing a coating with selectively triggered and accurately controllable self-healing behaviors. Herein, by integrating lamellar graphene oxide (GO) into a polycaprolactone (PCL) nanofiber loaded with 8-hydroxyquinoline (8HQ) corrosion inhibitors, a composite coating with precisely controllable self-healing capabilities is developed. The coating defects can be remotely and accurately repaired under near-infrared (NIR) light irradiation within a very short time.
View Article and Find Full Text PDFFood Chem
December 2024
College of Chemistry and Life Sciences, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China. Electronic address:
A novel electrochemical sensor for detecting heavy metal ions in seafood was developed to address food safety concerns. The sensor integrates graphene oxide into NH-UiO-66 loaded nanofiber carbon aerogel, enhanced its three-dimensional conductive network and effective active surface area (0.34 cm), which improved ion enrichment and oxidation-reduction reaction rates.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory for Carbon Neutral Technology, Northwest University, Xi'an 710127, China. Electronic address:
The rational design of highly efficient and cost-effective oxygen evolution reaction (OER) electrocatalysts is crucial for hydrogen production through electrocatalytic water splitting. Although the crystalline/amorphous heterostructure shows great potential in enhancing OER activity, its fabrication presents significantly greater challenges compared to that of crystalline/crystalline heterostructures. Herein, a microwave irradiation strategy is developed to construct reduced graphene oxide supported crystalline NiP/amorphous FePO heterostructure (NiP/FePO/RGO) as an efficient OER electrocatalyst.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!