NO oxidation catalysis on copper doped hexagonal phase LaCoO3: a combined experimental and theoretical study.

Phys Chem Chem Phys

Division of Fuel Cell & Energy Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, People's Republic of China.

Published: March 2014

Cobalt-based perovskite catalysts showed excellent performance towards NO-NO2 oxidation. We systematically investigated the influence of different levels of Cu-doping on the catalytic performance of hexagonal phase LaCoO3 (LaCo1-xCuxO3 (x = 0.1, 0.2, 0.3)) for NO oxidation. The catalytic activities of the oxide catalysts followed the sequence: LaCo0.9Cu0.1O3 > LaCoO3 > LaCo0.8Cu0.2O3 > LaCo0.7Cu0.3O3 where the highest NO conversion for LaCo0.9Cu0.1O3 was 82% at 310 °C. The relevant structural characterizations were conducted by XRD, BET, FTIR and TEM. The interaction between Co and Cu promoted the conversion of NO to NO2. Upon increasing the Cu doping content, a decrease of the performance resulted from the generation of isolated CuO on the surface of the oxides, confirmed using H2-TPR and XPS. Combined with first-principle calculations, we explored the reaction mechanism of NO oxidation on the surface and found that Cu doping would facilitate the reaction by decreasing the energy of oxygen vacancy formation and the NO2 desorption barrier from Co- or Cu-nitrite.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3cp54963aDOI Listing

Publication Analysis

Top Keywords

hexagonal phase
8
phase lacoo3
8
oxidation
4
oxidation catalysis
4
catalysis copper
4
copper doped
4
doped hexagonal
4
lacoo3 combined
4
combined experimental
4
experimental theoretical
4

Similar Publications

Harnessing Hole Sites in 2D Monolayer C for Metal Cluster Anchoring.

J Phys Chem Lett

January 2025

MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, P. R. China.

Synthesis of 2D quasi-hexagonal phase C (qHP C) has opened avenues for its application as a novel catalytic support. This study investigates the structure, stability, and anisotropic properties of Cu clusters anchored on the qHP C surface through density functional theory calculations. Our findings reveal that the Cu cluster preferentially occupies the intrinsic holes of the qHP C via one of its tetrahedral faces, resulting in enhanced stability and conductivity, with a significantly reduced band gap of 0.

View Article and Find Full Text PDF

In this study, the effect of feedstock concentration on the synthesis of WO nanostructures in a one-step hydrothermal process was investigated. According to our experiments, when titrating aqueous NaWO·2HO with HCl solutions of different concentrations to a constant pH of 1.5, after identical hydrothermal treatments at 180 °C, the morphology, crystal size and phase composition as well as the optical properties of the products could be tuned.

View Article and Find Full Text PDF

Electrons in topological flat bands can form new topological states driven by correlation effects. The pentalayer rhombohedral graphene/hexagonal boron nitride (hBN) moiré superlattice was shown to host fractional quantum anomalous Hall effect (FQAHE) at approximately 400 mK (ref. ), triggering discussions around the underlying mechanism and role of moiré effects.

View Article and Find Full Text PDF

Observation of magnetic skyrmion lattice in CrMnGe by small-angle neutron scattering.

Sci Rep

January 2025

Helmholtz-Zentrum Berlin für Materialien und Energie, 13109, Berlin, Germany.

Incommensurate magnetic phases in chiral cubic crystals are an established source of topological spin textures such as skyrmion and hedgehog lattices, with potential applications in spintronics and information storage. We report a comprehensive small-angle neutron scattering (SANS) study on the B20-type chiral magnet Cr[Formula: see text]Mn[Formula: see text]Ge, exploring its magnetic phase diagram and confirming the stabilization of a skyrmion lattice under low magnetic fields. Our results reveal a helical ground state with a decreasing pitch from 40 to 35 nm upon cooling, and a skyrmion phase stable in applied magnetic fields of 10-30 mT, and over an unusually wide temperature range for chiral magnets of 6 K ([Formula: see text], [Formula: see text] K).

View Article and Find Full Text PDF

Materials usually fracture before reaching their ideal strength limits. Meanwhile, materials with high strength generally have poor ductility, and vice versa. For example, gold with the conventional face-centered cubic (FCC) phase is highly ductile while the yield strength (~10MPa) is significantly lower than its ideal theoretical limit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!