Introduction: Correct anatomic tunnel positions are essential in anterior cruciate ligament (ACL) reconstruction. To establish recommendations for tunnel positioning based on anatomical findings and to compare tunnel positions with clinical results, different radiological measurement methods as the quadrant method exist. Comparing the data of different observers requires the validation of the reliability of measurement methods. The purpose of this study therefore was to determine the reliability of the quadrant method to measure tunnel positions in ACL reconstruction. The hypothesis was, that the quadrant method shows a low inter- and intraobserver variability.
Materials And Methods: In a test/retest scenario 20 knee surgeons were asked to determine defined tunnel positions in five lateral radiographs applying the quadrant method. Rotation, angle deviation, height and depth of the quadrant as well as absolute and relative tunnel positions of each observation were measured along referenced scales. Mean sizes and angle deviations of the quadrants, tunnel positions and deviations between the test/retest positions were calculated as well as standard deviations and range.
Results: Interobserver variability analyses, to plan as well as to determine tunnel positions in ACL reconstruction, showed a mean variability (SD) of <1 mm, with ranges of 2.5 mm for planning and 3.7 mm for determination of tunnel positions using the quadrant method. Intraobserver analysis showed mean variability with deviations of <1 mm and maximum standard deviations of 0.7 mm and ranges of up to 2.3 mm.
Conclusions: We confirmed the hypothesis that the quadrant method has a low inter- and intraobserver variability. Based on the presented validation data, the quadrant method can be recommended as reliable method to radiographically describe insertion areas of the ACL as well as to determine tunnel positions in ACL reconstruction intra and postoperatively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00402-014-1931-x | DOI Listing |
Purpose: To clarify the femoral tunnel location for a virtual anterior cruciate ligament (ACL) graft to simulate the native ACL.
Methods: Three-dimensional (3D) computed tomography (CT) and magnetic resonance imaging (MRI) were obtained in 14 normal knees in full extension. Two types of virtual triple bundle ACL grafts (VACLG) were created.
Microsurgery
January 2025
Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
Thinning of anterolateral thigh flap is challenging. Anatomical studies have shown variations in arterial branching patterns in the subcutaneous layer, which were suspected to be the reason for the high frequency of thinning failures. We attempted to visualize subcutaneous arterial courses preoperatively and perform thinning of perforator flaps using this information appropriately.
View Article and Find Full Text PDFAm J Sports Med
January 2025
Department of Sports Medicine, Peking University Third Hospital; Institute of Sports Medicine of Peking University; Beijing Key Laboratory of Sports Injuries, Beijing, China.
Background: There is a lack of evidence and continuous debate on whether femoral tunnel displacement substantially influences the clinical efficacy of medial patellofemoral ligament reconstruction (MPFL-R) in addressing recurrent patellar dislocation.
Purpose: To investigate possible associations between inaccurate femoral tunnel placement during MPFL-R and clinical outcomes, with a specific focus on proximal tunnel malpositioning.
Study Design: Cohort study; Level of evidence, 3.
Aesthet Surg J
January 2025
Plastic sugeon in private practice, Istanbul, Turkey.
Background: Over the past decade, facial aesthetics has gained popularity, with a notable increase in upper-face lift procedures. Despite the popularity of brows and forehead lifts, the optimal fixation technique remains controversial. Common methods involve suturing of the temporal fascia or using monocortical miniscrews anchored to the frontal bone.
View Article and Find Full Text PDFSci Rep
January 2025
Beijing Solidwel Intelligent Technology Co., Ltd., BeiJing, 100000, China.
Based on the Johnson-Cook constitutive model and modified Coulomb's law, the study investigates the impact of various process parameters on the weld temperature field in high-strength 5052 aluminum alloy friction stir welding (FSW) for aerospace applications. Utilizing a thermo-mechanical model, the significance of rotational speed, welding speed, and indentation on the peak weld temperature is examined through Taguchi's orthogonal experimental design. S/N ratio and ANOVA results show that the rotational speed has the most significant effect on the peak temperature of the weld, followed by the amount of indentation, and the welding speed has the smallest effect, the optimal combination of welding process parameters is determined as follows:the rotational speed is 1000 rpm, the amount of indentation is 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!