RGB marking and DNA barcoding are two cutting-edge technologies in the field of clonal cell marking. To combine the virtues of both approaches, we equipped LeGO vectors encoding red, green or blue fluorescent proteins with complex DNA barcodes carrying color-specific signatures. For these vectors, we generated highly complex plasmid libraries that were used for the production of barcoded lentiviral vector particles. In proof-of-principle experiments, we used barcoded vectors for RGB marking of cell lines and primary murine hepatocytes. We applied single-cell polymerase chain reaction to decipher barcode signatures of individual RGB-marked cells expressing defined color hues. This enabled us to prove clonal identity of cells with one and the same RGB color. Also, we made use of barcoded vectors to investigate clonal development of leukemia induced by ectopic oncogene expression in murine hematopoietic cells. In conclusion, by combining RGB marking and DNA barcoding, we have established a novel technique for the unambiguous genetic marking of individual cells in the context of normal regeneration as well as malignant outgrowth. Moreover, the introduction of color-specific signatures in barcodes will facilitate studies on the impact of different variables (e.g. vector type, transgenes, culture conditions) in the context of competitive repopulation studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3985654 | PMC |
http://dx.doi.org/10.1093/nar/gku081 | DOI Listing |
To address challenges in enhancing color uniformity and ambient contrast ratio (ACR) in RGB light-emitting diodes (LEDs) without losing efficiency, we developed a scattering-enhanced magnetic manipulation (SEMM) bilayer structure. The effect of the TiO scattering layer on improving the LED's angular intensity non-uniformity (AIN) was studied by ray-tracing simulations and optimized by varying the particle concentration. The magnetic manipulation technique formed the microcolumns and magnetic chains of the FeO anti-reflective layer, which was optimized by adjusting FeO particle size, magnetic field strength, and FeO concentration.
View Article and Find Full Text PDFSensors (Basel)
October 2024
Joint Transportation Research Program, Lyles School of Civil and Construction Engineering, College of Engineering, Purdue University, West Lafayette, IN 47907, USA.
Good visibility of lane markings is important for all road users, particularly autonomous vehicles. In general, nighttime retroreflectivity is one of the most challenging marking visibility characteristics for agencies to monitor and maintain, particularly in cold weather climates where agency snowplows remove retroreflective material during winter operations. Traditional surface-applied paint and glass beads typically only last one season in cold weather climates with routine snowplow activity.
View Article and Find Full Text PDFSensors (Basel)
September 2024
School of Innovation, Design and Technology (IDT), Mälardalen University, 72123 Västerås, Sweden.
Autonomous driving systems are a rapidly evolving technology. Trajectory prediction is a critical component of autonomous driving systems that enables safe navigation by anticipating the movement of surrounding objects. Lidar point-cloud data provide a 3D view of solid objects surrounding the ego-vehicle.
View Article and Find Full Text PDFSensors (Basel)
August 2024
School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China.
In maritime transportation, a ship's draft survey serves as a primary method for weighing bulk cargo. The accuracy of the ship's draft reading determines the fairness of bulk cargo transactions. Human visual-based draft reading methods face issues such as safety concerns, high labor costs, and subjective interpretation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!