Three physiological functions have been described for the skeletal muscle 1,4-dihydropyridine receptor (Ca(V)1.1):(1) voltage-sensor for excitation-contraction (EC) coupling, (2) L-type Ca(2+) channel, and (3) voltage-sensor for slow depolarization-dependent Ca(2+) entry. Members of the RGK (Rad, Rem, Rem2, Gem/Kir) family of monomeric GTP-binding proteins are potent inhibitors of the former two functions of Ca(V)1.1. However, it is not known whether the latter function that has been attributed to Ca(V)1.1 is subject to modulation by RGK proteins. Thus, the purpose of this study was to determine whether Rad, Gem and/or Rem inhibit the slowly developing, persistent Ca(2+) entry that is dependent on the voltage-sensing capability of Ca(V)1.1. As a means to investigate this question, Venus fluorescent protein-fused RGK proteins(V-Rad, V-Rem and V-Gem) were overexpressed in “normal” mouse myotubes. We observed that such overexpression of V-Rad, V-Rem or V-Gem in myotubes caused marked changes in morphology of the cells. As shown previously for YFPRem,both L-type current and EC coupling were also impaired greatly in myotubes expressing either V-Rad or V-Gem. There ductions in L-type current and EC coupling were paralleled by reductions in depolarization-induced Ca(2+) entry. Our observations provide the first evidence of modulation of this enigmatic Ca(2+) entry pathway peculiar to skeletal muscle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4203753PMC
http://dx.doi.org/10.4161/chan.27686DOI Listing

Publication Analysis

Top Keywords

ca2+ entry
20
skeletal muscle
8
v-rem v-gem
8
l-type current
8
current coupling
8
ca2+
6
entry
5
rgk
4
rgk protein-mediated
4
protein-mediated impairment
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!