Fluids subjected to suitable forcing will exhibit turbulence, with characteristics strongly affected by the fluid's physical properties and dimensionality. In this work, we explore two-dimensional (2D) quantum turbulence in an oblate Bose-Einstein condensate confined to an annular trapping potential. Experimentally, we find conditions for which small-scale stirring of the condensate generates disordered 2D vortex distributions that dissipatively evolve toward persistent currents, indicating energy transport from small to large length scales. Simulations of the experiment reveal spontaneous clustering of same-circulation vortices and an incompressible energy spectrum with k(-5/3) dependence for low wave numbers k. This work links experimentally observed vortex dynamics with signatures of 2D turbulence in a compressible superfluid.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.111.235301 | DOI Listing |
Materials (Basel)
January 2025
CNR-IOM-Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy.
Hybrid systems consisting of highly transparent channels of low-dimensional semiconductors between superconducting elements allow the formation of quantum electronic circuits. Therefore, they are among the novel material platforms that could pave the way for scalable quantum computation. To this aim, InAs two-dimensional electron gases are among the ideal semiconductor systems due to their vanishing Schottky barrier; however, their exploitation is limited by the unavailability of commercial lattice-matched substrates.
View Article and Find Full Text PDFNat Commun
January 2025
Univ. Grenoble Alpes, CEA, Grenoble INP, IRIG-PHELIQS, 38000, Grenoble, France.
Hybrid superconductor-semiconductor Josephson field-effect transistors (JoFETs) function as Josephson junctions with gate-tunable critical current. Additionally, they can feature a non-sinusoidal current-phase relation (CPR) containing multiple harmonics of the superconducting phase difference, a so-far underutilized property. Here we exploit this multi-harmonicity to create a Josephson circuit element with an almost perfectly π-periodic CPR, indicative of a largely dominant charge-4e supercurrent transport.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Shanghai Key Laboratory of High Temperature Superconductors, Institute for Quantum Science and Technology, Department of Physics, Shanghai University, Shanghai 200444, China. Electronic address:
Phase engineering strategies in two-dimensional transition metal dichalcogenides (2D-TMDs) have garnered significant attention due to their potential applications in electronics, optoelectronics, and energy storage. Various methods, including direct synthesis, pressure control, and chemical doping, have been employed to manipulate structural transitions in 2D-TMDs. Metal intercalation emerges as an effective technique to modulate phase transition dynamics by inserting external atoms or ions between the layers of 2D-TMDs, altering their electronic structure and physical properties.
View Article and Find Full Text PDFACS Nano
January 2025
School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China.
Single-crystal Au(111), renowned for its chemically inert surface, long-range "herringbone" reconstruction, and high electrical conductivity, has long served as an exemplary template in diverse fields, , crystal epitaxy, electronics, and electrocatalysis. However, commercial Au(111) products are high-priced and limited to centimeter sizes, largely restricting their broad applications. Herein, a low-cost, high-reproducible method is developed to produce 4 in.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Department of Physics and Astronomy Athens, Ohio University, Athens, OH 45701, USA.
High-quality two-dimensional transition metal dichalcogenides (2D TMDs), such as molybdenum disulfide (MoS), have significant potential for advanced electrical and optoelectronic applications. This study introduces a novel approach to control the localized growth of MoS through the selective oxidation of bulk molybdenum patterns using Joule heating, followed by sulfurization. By passing an electric current through molybdenum patterns under ambient conditions, localized heating induced the formation of a molybdenum oxide layer, primarily MoO and MoO, depending on the applied power and heating duration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!