14C-Perchloroethylene is covalently bound to DNA, RNA and proteins of rat and mouse organs in vivo after ip injection. Covalent Binding Index values are typical of weak-moderate and weak initiators, for mouse and rat liver, respectively. The greater amounts of labelings detected in mouse liver and in rat kidney macromolecules are consistent with the known toxic and carcinogenic actions of this compound. In vitro binding of perchloroethylene to nucleic acids and proteins proceeds through the involvement of the P-450-dependent mixed function oxidase system from liver microsomes. Kidney, lung and stomach microsomal fractions are uneffective. Cytosolic enzymes from all assayed organs are much more efficient than liver microsomes in bioactivating the compound. GSH addition to liver microsomal system greatly enhances binding extent. This observation suggests that GSH plays a role in the binding of perchloroethylene metabolites as for symmetrically substituted haloethanes.
Download full-text PDF |
Source |
---|
Biochemistry
February 2022
Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.
Queuosine (Q) is a highly modified nucleoside of transfer RNA that is formed from guanosine triphosphate over the course of eight steps. The final step in this process, involving the conversion of epoxyqueuosine (oQ) to Q, is catalyzed by the enzyme QueG. A recent X-ray crystallographic study revealed that QueG possesses the same cofactors as reductive dehalogenases, including a base-off Co(II)cobalamin (Co(II)Cbl) species and two [4Fe-4S] clusters.
View Article and Find Full Text PDFBiochemistry
June 2021
Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.
Organisms that produce reductive dehalogenases utilize halogenated aromatic and aliphatic substances as terminal electron acceptors in a process termed organohalide respiration. These organisms can couple the reduction of halogenated substances with the production of ATP. Tetrachloroethylene reductive dehalogenase (PceA) catalyzes the reductive dehalogenation of per- and trichloroethylenes (PCE and TCE, respectively) to primarily -dichloroethylene (DCE).
View Article and Find Full Text PDFMicrobiologyopen
December 2020
Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
Energy conservation via organohalide respiration (OHR) in dehalogenating Sulfurospirillum species is an inducible process. However, the gene products involved in tetrachloroethene (PCE) sensing and signal transduction have not been unambiguously identified. Here, genome sequencing of Sulfurospirillum strains defective in PCE respiration and comparative genomics, which included the PCE-respiring representatives of the genus, uncovered the genetic inactivation of a two-component system (TCS) in the OHR gene region of the natural mutants.
View Article and Find Full Text PDFEnviron Int
October 2019
Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA; Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA. Electronic address:
Environmental and occupational exposure to industrial chemicals has been linked to toxic and carcinogenic effects in animal models and human studies. However, current toxicology testing does not thoroughly explore the endocrine disrupting effects of industrial chemicals, which may have low dose effects not predicted when determining the limit of toxicity. The objective of this study was to evaluate the endocrine disrupting potential of a broad range of chemicals used in the petrochemical sector.
View Article and Find Full Text PDFEnviron Health Perspect
June 2019
1 Department of Veterinary Integrative Biosciences, Texas A&M University , College Station, Texas, USA.
Background: Interindividual variability in susceptibility remains poorly characterized for environmental chemicals such as tetrachloroethylene (PERC). Development of population-based experimental models provide a potential approach to fill this critical need in human health risk assessment.
Objectives: In this study, we aimed to better characterize the contribution of glutathione (GSH) conjugation to kidney toxicity of PERC and the degree of associated interindividual toxicokinetic (TK) and toxicodynamic (TD) variability by using the Collaborative Cross (CC) mouse population.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!