Background: Aerosolized delivery of antibiotics is hindered by poor penetration within distal and plugged airways. Antibacterial perfluorocarbon ventilation (APV) is a proposed solution in which the lungs are partially or totally filled with perfluorocarbon (PFC) containing emulsified antibiotics. The purpose of this study was to evaluate emulsion stability and rheological, antibacterial, and pharmacokinetic characteristics.

Methods: This study examined emulsion aqueous droplet diameter and number density over 24 hr and emulsion and neat PFC viscosity and surface tension. Additionally, Pseudomonas aeruginosa biofilm growth was measured after 2-hr exposure to emulsion with variable aqueous volume percentages (0.25, 1, and 2.5%) and aqueous tobramycin concentrations (Ca=0.4, 4, and 40 mg/mL). Lastly, the time course of serum and pulmonary tobramycin concentrations was evaluated following APV and conventional aerosolized delivery of tobramycin in rats.

Results: The initial aqueous droplet diameter averaged 1.9±0.2 μm with little change over time. Initial aqueous droplet number density averaged 3.5±1.7×10(9) droplets/mL with a significant (p<0.01) decrease over time. Emulsion and PFC viscosity were not significantly different, averaging 1.22±0.03×10(-3) Pa·sec. The surface tensions of PFC and emulsion were 15.0±0.1×10(-3) and 14.6±0.6×10(-3) N/m, respectively, and the aqueous interfacial tensions were 46.7±0.3×10(-3) and 26.9±11.0×10(-3) N/m (p<0.01), respectively. Biofilm growth decreased markedly with increasing Ca and, to a lesser extent, aqueous volume percentage. Tobramycin delivered via APV yielded 2.5 and 10 times larger pulmonary concentrations at 1 and 4 hr post delivery, respectively, and significantly (p<0.05) lower serum concentrations compared with aerosolized delivery.

Conclusions: The emulsion is bactericidal, retains the rheology necessary for pulmonary delivery, is sufficiently stable for this application, and results in increased pulmonary retention of the antibiotic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4227435PMC
http://dx.doi.org/10.1089/jamp.2013.1058DOI Listing

Publication Analysis

Top Keywords

aqueous droplet
12
delivery tobramycin
8
aerosolized delivery
8
droplet diameter
8
number density
8
tobramycin concentrations
8
initial aqueous
8
emulsion
5
aqueous
5
characterization reverse-phase
4

Similar Publications

Introduction: Rhein, a natural bioactive lipophilic compound with numerous pharmacological activities, faces limitations in clinical application due to poor aqueous solubility and low bioavailability. Thus, this study aimed to develop a rhein-loaded self-nano emulsifying drug delivery system (RL-SNEDDS) to improve solubility and bioavailability.

Methods: The RL-SNEDDS was prepared by aqueous titration method with eucalyptus oil (oil phase), tween 80 (surfactant), and PEG 400 (co-surfactant) and optimization was performed by 3 factorial design.

View Article and Find Full Text PDF

In both nature and industry, aerosol droplets contain complex mixtures of solutes, which in many cases include multiple inorganic components. Understanding the drying kinetics of these droplets and the impact on resultant particle morphology is essential for a variety of applications including improving inhalable drugs, mitigating disease transmission, and developing more accurate climate models. However, the previous literature has only focused on the relationship between drying kinetics and particle morphology for aerosol droplets containing a single nonvolatile component.

View Article and Find Full Text PDF

Simple method for the direct measurement of cohesive forces between microscopic particles.

Eur Phys J E Soft Matter

January 2025

Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4M1, Canada.

We present a simple and inexpensive method for measuring weak cohesive interactions. This technique is applied to the specific case of oil droplets with a depletion interaction, dispersed in an aqueous solution. The experimental setup involves creating a short string of droplets while immobilizing a single droplet.

View Article and Find Full Text PDF

Aqueous two-phase systems (ATPSs) have primarily been developed in the form of emulsions to enhance their utilization in green and biocompatible applications. However, numerous challenges have arisen in forming stable and processable water-in-water (W/W) emulsion systems, as well as in fine-tuning the interconnectivity of their internal structure, which can significantly impact their performance. To effectively address these challenges, we elucidate, for the first time, the root cause of the poor stability of W/W emulsions.

View Article and Find Full Text PDF

Calcium alginate hydrogel is one of the most widely used materials for drug-carrier beads used in drug-delivery systems. In this study, we developed a new method to improve the encapsulation efficiency of ingredients, such as medicines, in calcium alginate hydrogel beads. In the gold standard method, the hydrogel beads are prepared in the liquid phase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!