We investigated the bipolar resistive switching characteristics of the resistive random access memory (RRAM) device with amorphous carbon layer. Applying a forming voltage, the amorphous carbon layer was carbonized to form a conjugation double bond conductive filament. We proposed a hydrogen redox model to clarify the resistive switch mechanism of high/low resistance states (HRS/LRS) in carbon RRAM. The electrical conduction mechanism of LRS is attributed to conductive sp2 carbon filament with conjugation double bonds by dehydrogenation, while the electrical conduction of HRS resulted from the formation of insulating sp3-type carbon filament through hydrogenation process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3922695PMC
http://dx.doi.org/10.1186/1556-276X-9-52DOI Listing

Publication Analysis

Top Keywords

amorphous carbon
12
resistive random
8
random access
8
access memory
8
carbon layer
8
conjugation double
8
electrical conduction
8
carbon filament
8
carbon
6
hydrogen induced
4

Similar Publications

This article provides an alternative pathway towards cyclosilapentenes (, SiH2-iPr and SpiroSi) involving the use of Rieke magnesium to activate the requisite dienes for synthesis. Subsequent metal-mediated dehydrocoupling of cyclosilapentene and mixtures with another cyclogermapentene gives oligomers with backbone Si-Si (number average molecular weight, = 1.0 kDa) and Si-Ge ( = 1.

View Article and Find Full Text PDF

Cocombustion with biomass tar is a potential method for NO reduction during fossil fuel combustion. In this work, the molecular dynamic method based on the reactive force field was used to study the NO reduction by phenol, which is a typical tar model compound. Results indicate that phenol undergoes significant decomposition at 3000 K, resulting in the formation of small molecular fragments accompanied by the generation of large molecular, network-structured soot particles.

View Article and Find Full Text PDF

Temperature-Dependent Formation of Carbon Nanodomains in Silicon Oxycarbide Glass-A Reactive Force Field MD Study.

J Phys Chem C Nanomater Interfaces

January 2025

Institute of General, Inorganic and Theoretical Chemistry Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.

Novel anode materials for lithium-ion batteries (LIBs) are constantly being explored to further improve battery performance. In this work, ReaxFF molecular dynamics (MD) simulations are performed to model the early stages in the synthesis of nanostructured silicon carbide (SiC), which is one such promising material. The focus lies on its precursor, silicon oxycarbide glass of composition (SiOC) (17 mol% Si, 28 mol% O, and 54 mol% C), in the following referred to as SiOC.

View Article and Find Full Text PDF

All-solid-state (ASS) batteries are a promising solution to achieve carbon neutrality. ASS lithium-sulfur (Li-S) batteries stand out due to their improved safety, achieved by replacing organic solvents, which are prone to leakage and fire, with solid electrolytes. In addition, these batteries offer the benefits of higher capacity and the absence of rare metals.

View Article and Find Full Text PDF

Interstitial Doping in Ultrafine Nanocrystals for Efficient and Durable Water Splitting.

Angew Chem Int Ed Engl

January 2025

Nanjing University of Aeronautics and Astronautics, College of Materials Science and Technology, No. 169 Sheng Tai West Road, Jiangning District, Nanjing, Jiangsu, China, 211106, Nanjing, CHINA.

Transition metal-based catalysts with high efficiency and stability for overall water splitting (OWS) offer significant potential for reducing green hydrogen production costs. Utilizing sputtering deposition technology, we propose a deposition-diffusion strategy to fabricate heterojunction coatings composed of ultrafine FeCoNi-C-N transition metal interstitial solid solution (TMISS) nanocrystals and amorphous nitrided carbon (NC) on the pre-deposited NC micro column arrays. The diffusion of C and N atoms results in the formation of uniformly distributed TMISS nanocrystals, with an average diameter of ~1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!